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ABSTRACT
The fine scale structure and resulting activity of the brain are largely shaped by 
experience, suggesting that the faster rate and complexity of experience offered 
by modern civilization may have significant impact on human brain dynamics. 
Here we defined a new measure of complexity of the EEG signal and compared 
it across populations spanning incomes from <$1/day to ~$410/day with a wide 
range of access to features of modern life such as urban environments, higher 
education, electricity, motorized transport and telecommunication. Complexity 
across our sample spanned a 2.75-fold range, separating into two distinct 
distributions of pre-modern and modern experience. Furthermore, complexity 
scaled systematically with various technologies and experience factors, of which 
travel or geofootprint had the strongest relationship. Complexity also had a 
steep non-linear relationship with income that leveled out at an income of ~$30/
day.      Finally, it was strongly correlated to performance on a pattern completion 
task indicating its relevance as a cognitive measure. In light of growing income 
inequality and divergence in access to the tools of modern living across the 
globe, our findings have significant implications for social policy.

INTRODUCTION
Until 1800 the majority of the world lived in small rural settlements, education and literacy were 
limited, and mobility was constrained by horse speed.  The world has changed profoundly over the 
last 200 years with increasing agglomeration into large urban settlements alongside greater mobility 
and communication enabled by technology, and an explosion of collective knowledge. These 
elements of modern civilization greatly alter both the rate and the possible complexity of experience 
but have not perpetuated uniformly across the world. With incomes now diverging well over a 
million fold [1; 2] people increasingly diverge in their access and use of these tools, and therefore the 
rate and complexity of their experience of the world.  What is the impact of this dramatic divergence 
on the human brain?

Unlike any other organ, the brain is profoundly experience dependent in its function.  The precise 
circuitry and dynamics of the brain are sculpted by experience [3; 4; 5; 6; 7; 8; 9; 10] and changes 
in the level of activity result in not just quantitative, but also qualitative changes in the mechanism 
of neural function [11; 12]. Furthermore, studies done in rodents show that placing the animal 
in a more complex or enriched environment has far reaching impact on gene expression in the 
brain [13], the degree and nature of synaptic plasticity [14; 15; 16; 17; 18], dendritic branching 
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[19; 20], brain surface area and a host of other functional and 
structural aspects [21; 22]. Enriched environment also protects 
against cognitive deficits in aging [23] and those resulting from 
other diseases such as epilepsy [24], Alzheimer’s[25] and Down 
Syndrome [26; 27; 28].  Furthermore, studies in the United States 
demonstrate that income, particularly childhood poverty, has a 
dramatic negative effect on cortical volume [29] and surface area 
[30], as well as gamma power in the EEG [31]. Conversely years 
of education have been shown to correlate positively with these 
structural aspects of the cortex [32; 33]. 

These findings strongly suggest that the advances of modernity 
may have dramatically altered the dynamical functioning of the 
human brain. We therefore address here how differences along 
core dimensions of income and access to the dominant tools and 
structures of modern civilization have impacted the complexity of 
dynamics of the human brain.  

We chose to carry out this study in India, where modern cities exist 
in relatively close proximity to remote rural settlements with little 
access to modern tools.  In order to restrict the impact of racial 
genetics and language, we confined our study to the State of Tamil 
Nadu, which is relatively homogeneous along these dimensions.  
For this study we collected resting EEG activity from participants 
for 3 minutes with informed consent in a quiet environment 
with their eyes closed, along with a host of demographic and 
socioeconomic information including income, education, 
occupation, travel patterns, mobile phone usage, electricity and 
fuel consumption and Internet usage. Our sample comprised 402 
adults between the ages of 21 and 65 from 48 locations including 
remote settlements of just 300 people with no access to electricity 
or motorized transport, to cities of several million people with all 
modern amenities (see Methods, Sup. Figs. 1A,B.) Annual incomes 
of participants ranged from $300 to approximately $150,000 
dollars, (conversion at 2014 exchange rates of Rs. 60 INR per USD) 
translating to daily incomes of $0.85 to ~$410 (Sup. Fig.1C). The 
~483 fold range of incomes of our sample has a distribution that is 
roughly similar in structure to world income distribution, relevant 
to upwards of 90% of the global population. Across this range 
of incomes, formal education levels spanned anywhere from no 
schooling to college graduates, with college educated representing 
~10% of the sample, again in line with global metrics for education 
[34] (Sup. Fig.1D). 

Our results indicate a distinct shift in complexity that is 
systematically related to signatures of modernity with significant 
implications for how we understand ourselves collectively and 
how we approach social and economic development around the 
world.

MATERIALS AND METHODS
Field Recruitment, Survey and Recording
Participants were recruited from 48 locations across the state of 
Tamil Nadu in India (Sup. Fig. 1A). Locations were selected to span 
various criteria of population, education levels, industrialization 
and infrastructural features such as distance to road, electrification, 
industrial worker ratio and other factors derived from the census, 
economic census and other geospatial data sources. 

Participants were selected to span an income range from $0.85 
to ~$410/day (family income) and within each income band ($0-
$10/day, $10-$30/day and >$30/day) were spread roughly equally 
by age and gender. 

Willing participants who met our demographic sampling criteria 
(gender, age, income, no known history of physical or mental 
illness) were first surveyed to capture information about their 
income, education and technology use. Participants were then 
instructed to wash and dry their hair on the day of the EEG 
recording without the application of hair products, particularly hair 
oil, which is customary in the region.  Low-income participants 
were provided with a sachet of shampoo. 

Recording locations were often outside in rural locations and care 
was taken to select locations at distance from noise producing 
equipment such as mobile towers and electric motors and pumps.  
Low-income participants were sometimes paid Rs. 150 ($2.50) to 
compensate for loss of wages when experiments were conducted 
during working hours. Prior to or following the recording (but 
on the same day), participants were asked to participate in a 
simple test of memory recall. A subset (28 people in two locations 
spanning a range of complexity) was asked to complete a short 
pattern completion test.  

All participants were fully informed about the intent and 
methodology of the experiment and signed a consent form. All 
recruitment, consent and data collection were carried out in 
accordance with protocols approved by Health Media IRB (USA, 
OHRP IRB #00001211) and Sigma-IRB (India) in accordance with 
Title 45, code of federal regulations, sub-part A of NIH and Indian 
Independent Ethics Committee requirements.

Survey of Individual Experience
To understand the broad contours of how individuals across 
different socioeconomic contexts experience the world, our survey 
probed individual and family income levels, years of education, 
geo-footprint as measured by how far they had traveled in the 
world, geographic distance of their social network of friends 
and family, and finally use and spending on various modern 
technologies from fuel to electricity, mobile phones and the 
internet (Sup. Table 1).  

Cognitive Tests
NAME RECALL: Participants who had writing literacy (n=346) 
were asked to write down on a piece of paper as many names of 
people or places that they could think of in a one minute period. 
We note that this exercise was done prior to or immediately after 
the recording and not during where they remained still with their 
eyes closed.

PATTERN COMPLETION: The pattern completion test was an 
abridged adaptation of the Raven’s test and involved 5 questions of 
increasing difficulty.  Questions were of a standard format showing 
a pattern and a multiple-choice selection of five options of which 
one completed the pattern (Fig. 5C). The patterns were entirely 
visual in nature and required no reading literacy or numerical 
literacy beyond counting to 10. The test was not timed. Again 
the test was conducted on the same day as the recording but not 
simultaneously.
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EEG Recordings
Our recording paradigm involved a simple measurement of 
the resting EEG for 3 minutes when the subject was sitting still 
with their eyes closed.  To carry out our recordings, we used 
the Emotiv EPOC wireless EEG headset with 14 gold plated 
electrodes (Sup. Fig. 1F) and 2 reference electrodes (M1, a 
ground reference point for measuring the voltage of the other 
sensors and M2, a feed-forward reference point for reducing 
electrical interference from external sources). The Emotiv EPOC 
is an inexpensive, portable and easy to use device, making it very 
advantageous for large-scale studies across multiple locations.  
In addition, it has a 12 hour battery life which is convenient for 
recording in remote locations where electricity may be absent or 
intermittent.  Multiple studies have now shown that the EPOC is 
capable of measuring event-related potentials [35; 36; 37; 38; 39] 
as well as variation in EEG related to mood [40] and cognitive 
load [41]. Nonetheless, given its lower temporal resolution 
(128 Hz compared to ≥1kHz of clinical grade EEG) and higher 
electrode impedance (10-15 kΩ minimized by maintaining 
saline hydration of electrode sponges, compared to 2-5 kΩ of 
clinical grade electrodes) we sought to determine the suitability 
of the EPOC for our purpose by comparing the complexity 
measured in simultaneous recordings with the EPOC and a high 
end clinical grade EEG device. The very close results (Sup. Fig 3, 
described further down) motivated our use of the device. 

Finally, we note that our eyes closed paradigm mitigated any 
artifacts from EMG signals arising from movement such as eye 
blink.

Signal Complexity
We defined a measure of complexity in terms of the diversity of 
patterns represented in the waveform (Temporal Complexity 
or CT) as follows. For each channel or electrode we calculated 
the correlation rn of 100 non-overlapping randomly selected 
segments of t ms duration or n points where n= (t/1000)*sampling 
rate in Hz as defined below.

where x and y are the means of the signal and sx and sy are the 
standard deviation of the two segments compared (essentially 
the standard deviation of the amplitude distribution of the 
segment). 

We then constructed the distribution of the (1-|rn|) x100 
values for each channel, which we call the diversity distribution 
(cumulative form shown in Sup. Fig. 2A) that provides a measure 
of how different the segments are. While the EEG from different 
electrodes in an individual could have a fair degree of variance, 
no particular region was distinct when averaged across all the 
sampled individuals (Sup. Fig. 2B). We then calculated the 
average diversity distribution across all channels and defined the 
complexity CT for the individual as the median of the average 
diversity distribution.

By definition the measure could span a range from 0 to 100 
where CT = 0 would essentially be a highly repetitive pattern 
where at least half of the pairs of random segments had r = 1.  At 

the extreme this would be a flat line. Conversely, a measure of 
100 would reflect the maximal diversity where at least half of the 
segment pairs had a correlation of 0 such as would be expected 
with random noise, meaning the waveform rarely revisited the 
same pattern within the recording or analysis period. 

We chose the period t = 750 ms for reasons described below 
corresponding to n = 96 points points. Measured thus the CT 
varied from 35 to 96 across our sample, a 2.75-fold range (Fig 1A).  

Selection of segment duration (t)
A fundamental aspect of the measure is the length of segment 
compared. Shorter segments would have fewer possible 
configurations and therefore produce different results. Periods of 
synchrony with fine scale temporal structure have been found to 
vary in duration from 100 to 900 ms [42; 43].  We thus looked at 
complexity across our sample as a function of segment duration 
from 100 to 1250 ms.  

At duration t=100 ms the mean CT across our sample was ~62, 
increasing sharply to ~75 at t =  250 ms and then staying relatively 
flat, declining only slightly to 72 as the duration was increased 
to 1250 ms (Sup. Fig. 2C). However, as the duration increased 
from 250 to 750 ms, the coefficient of variation of CT across our 
sample increased steeply from 10% to 18% at 750 ms, flattening 
out thereafter at 19% (Sup. Fig 2D; shown CV%). This is in sharp 
contrast to results obtained when the amplitude values of the 
signal were shuffled, destroying the temporal structure.  In the 
shuffled signal CT increased from 88 for n= 100 ms to 98+ for 
n=1250 ms indicating more repetitive temporal motifs in the 
signal relative to random. Correspondingly CV% decreased in 
the shuffled signal, tending towards 0 at 1250 ms from a max of 
57% at 250 ms (Sup. Fig. 2D). 

We thus chose the period n = 750 ms for analysis going forward 
as representative of the minimum duration at which complexity 
of the temporal sequence diverged maximally across the 
population. 

The pattern of CT versus sampling rate was also similar, 
increasing up to 32 Hz and then flattening out (Sup Fig. 2E) 
along with concomitant increases and flattening out of the CV% 
(Sup Fig. 2F) suggesting that most of the relevant signal had 
frequencies below 64 Hz (see next section for further discussion).  
Comparisons of the shuffled signal also increased with sampling 
rate with a similar pattern (but from 92 to 99+) while CV% again 
in stark contrast to the data, decreased, with increasing sampling 
rate, tending towards 0 as the sampling rate was increased. 

Effects of device properties  
and sampling resolution
CT is fundamentally dependent on two factors of the measuring device, 
the electrode impedance and the sampling rate of the signal.  Higher 
electrode impedance would add noise into the signal, particularly 
in the lower frequency ranges [44]. A lower sampling rate may lose 
important temporal structure that could distort CT. To determine 
the impact of these factors we compared recordings performed 
simultaneously on people fitted concurrently with both the EPOC 
and the clinical Neuroscan Version 4.3 (n=5, methods and data from 
Badcock et al, 2013) (Sup Fig 3A-D).  Note that these simultaneous 
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recordings were done for 13 minutes with eyes open and therefore 
represented a different experimental paradigm than our sample. 

The EPOC signals were high-pass filtered with a 0.16 Hz cut-off, 
pre-amplified and low-pass filtered at an 83 Hz cut-off.  The analog 
signals were then digitized at 2048 Hz and filtered using a 5th-
order sinc notch filter (50 and 60 Hz) before being down-sampled 
to 128 Hz (company communication). The effective bandwidth of 
the signal is therefore between 0.16 and 45 Hz.  In contrast, the 
Neuroscan samples at 1 kHz with band pass filtering between 1 
and 100 Hz. To create as close a comparison as possible, and to 
remove 50 Hz noise, we applied 50 and 60 Hz notch filters to the 
Neuroscan (NS) signa. 

The power spectrums of the simultaneously recorded EPOC and the 
NS signals were very similar when the NS signal was downsampled 
to 125 Hz by using every 8th point in the recording (Sup. Fig. 3A). 
The EPOC had higher signals in the 0.16 – 1 Hz range that had 
been filtered out in the Neuroscan recordings. However, given 
that these are very low they are not likely to impact the complexity 
measure which involves changes in the signal on faster time scales. 
Moreover, any impact of this noise is likely to reduce the difference 
between groups and not artificially increase it.

We next looked at the impact of sampling frequency on CT.  Much 
of the useful range of the EEG signal, given its spatial resolution 
and filtering of the signal by the skull, is likely to be within the 
60-70 Hz range suggesting that the 128 Hz sampling of the EPOC 
would be sufficient. For instance, even rhythmic discharges of 
fast spiking bursts with spike rates greater than 100 Hz typically 
produce gamma range (30-70 Hz) oscillations in the LFP [45]. 
Nonetheless, high frequency activity in the EEG has been shown 
to relate to cortical processing [46].  Thus if large differences in 
waveform patterns exist between 45 Hz and 100 Hz or even beyond, 
CT measured using EPOC could be a considerable underestimate. 
We therefore looked at CT as a function of sampling frequencies 
of 25 to 500 Hz in the NS signal and 16 to 128 Hz in the EPOC.

Sup. Fig.3B shows the values of CT for both devices averaged across 
the 5 simultaneous recordings as a function of sampling rate.          
CT in both the EPOC and NS increased with sampling rate 
although CT was marginally lower in the EPOC and flattened out 
beyond 64 Hz while CT continued to increase slightly up to 250 Hz 
in the NS.  Nonetheless at the resolution of 128 Hz the differences 
were small and systematic (Sup Fig. 3D). Thus, given the sampling 
constraints of the EPOC, it performed remarkably well.

We next looked at CT in the EPOC and NS as a function of duration (at 
128/125 Hz sampling for the EPOC and NS respectively).  Here again 
the pattern was similar in the two devices (Sup. Fig. 3C), although  
CT was marginally lower in the EPOC.  

A comparison of the CT values in the EPOC and the NS (duration 
750 ms, sampling rate of 128/125 Hz) across the 5 individual is 
shown in Fig. 3D. CT values in the NS were on average 2.3 points 
higher with a linear relationship (R2=0.62). Given the high 
similarity we concluded that the EPOC was an appropriate device 
for our study.

Finally we note that the CT values in this sample of 5 people who 
were all graduate researchers at Macquarie University in Australia 
fell between 85 and 96, in the range that we found for people in our 
modern, educated and technology savvy group using the EPOC.

Spectral Measures 
To analyze the spectral properties of the signal we computed the 
component in each frequency band delta (0-4), theta (4-7.5), alpha 
(7.5-14), beta (14-30) and gamma (30+) for each channel as: 

Spectral Component = ∑band|X(f)|, 

where X(f) is the Discrete Fourier Transform or DFT.  We then 
calculated and reported the mean across all channels (Fig. 1C).

Spectral entropy was determined by computing the Shannon entropy 
of normalized power spectrum density (PSDN) as:

SE = -∑N
f=1pf log(pf )  

where pf is the PSDN for each frequency f and PSD = |X(f)|2.  The 
reported value is the average across all channels (Fig. 1B).

Statistical Tests
CONTROLLING FOR INTRA-PERSON VARIABILITY

To determine whether our results could be accounted for by intra-
person variability rather than true population differences we measured 
resting, eyes closed EEG activity in 20 people in 10 separate sessions 
conducted over a week at different times of the day. We then used 
this to construct an average intra-person distribution and assess the 
probabilities of randomly picking groups with significantly different 
population means.

The coefficient of variation across channels within an individual, 
expressed as a percentage (CV%), had a median of 10%, compared to 
the CV% of 18% across our sample population (Sup Fig. 4A, n=400).  
People with higher complexity overall generally had lower CV% 
across channels, as low as 2%, while those with lower complexity 
overall were more likely to have greater cross channel variance (Sup 
Fig. 4B).  This suggests that those with lower overall CT have much 
more location-to-location variation and therefore potentially higher 
variability arising from differences in electrode placement. 

We next looked at the variability within individuals (n=20) arising 
over separate recording sessions. The variation in CT across sessions 
for each person was significantly narrower than the overall sample and 
also much narrower than the inter-channel variation (Sup Fig. 4B). 
Nonetheless, CV% within individuals ranged from 2% to 20% 
with an average of ~10%.  Furthermore, unlike the variation across 
channels, this variability was not correlated with the CT value 
itself (Sup Fig. 4C filled circles) or with the inter-channel variation  
(Fig. 4D). This suggests that variation is more a consequence of state 
of mind than small differences in electrode placement.  

We next constructed an average intra-person distribution by 
shifting each individual distribution such that the peak value was 0 (i.e. 
subtracting the peak value), and then averaging across them (Sup. Fig. 4E).   
Deviations from the peak represented the cross-trial variation in CT 
points to the left and right of the peak in the average person.  We 
then drew random samples of varying equal and unequal size (30 
vs. 30, 30 vs. 60 which were typical of our size groupings in various 
comparisons) to determine the probability of a difference arising 
between the groups (Sup. Fig. 4F). The probability of a difference 
in the mean of ≥5 CT points between two groups was less than 
5% for both equal and unequal groupings. More significantly, the 
probability of choosing two groups with a difference in mean of 2.5 
points or higher that was statistically significant at a 0.05 level by a 
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t-test was 2x10-3 at the highest (Sup Fig. 4F inset).  Thus it would be 
safe to assume that statistically significant results of 2.5 CT points or 
higher obtained between groups of people along different experiential 
criteria would be highly unlikely to arise from artifacts of trial-to-trial 
variation within individuals. 

STATISTICAL SIGNIFICANCE OF TRENDS

To determine the significance of the trends observed in Fig. 4, i.e. 
the shift in population means of CT relative to income, education 
and other factors, we computed various statistics and probabilities.  
We first looked at the R2 of a best fit for income and education 
(logarithmic and linear respectively) as well as the correlation and 
their p-values, which provided an indication of the nature of the 
trend.  We next computed the significance of an ANOVA (pANOVA), 
which would provide the probability of a difference across the 
various bins. To determine the likelihood of such a trend appearing 
that could not be accounted for by intra-person fluctuations, we also 
computed the probability of finding a similar trend from shuffling 
the CT values across the participants 1000 times including: (i) 
the probability of obtaining a significant ANOVA in the shuffled 
iterations that was ≤ 0.05 (pshuff1) or (ii) ≤ the p-value of the data 
(pshuff2) and (iii) the probability of finding a shuffled iteration with a 
trend that was positively correlated with p<0.05 to the data (pshuff3). 
These statistics are shown in Table 1.

Principal Component Analysis
Principal Component Analysis was done using the FactomineR 
PCA function.  Prior to application of the PCA function, all records 
without values in any of the columns were removed from the 
analysis (121/402 records).  Secondly, given that the distributions 
of data across all variables except Travel and Education (i.e. Income, 
Fuel, Phone, Electricity, Population) were lognormal in nature, 
these variables were log transformed with a base 5 to create linear 
relationships among the variables. Individual component scores 
were calculated as the contribution of each element multiplied by 
the unscaled contextual factors. 

RESULTS
A measure of complexity of the EEG signal
Complexity is not a clearly defined concept but in its broadest sense 
could be thought of as the diversity of possible configurations that 
could emerge from a nonlinear interdependent system.  In the 
context of the brain, this could be the various patterns of activity 
produced by the communication of its billions of neurons. Much 
evidence now points to spatiotemporal patterns of neuronal 
activity as representative of memories and behaviors [47; 48; 49]. 
Furthermore these associations between spatiotemporal patterns 
of neuronal activity and memory and behavior have been found 
at various resolutions of measurement, from spiking patterns of 
individual neurons [48; 50; 51] to local field potentials (LFPs) 
measured with microelectrodes on the surface of brain tissue 
[52], ECoG [53; 54] and EEG [55; 56].  These field level potentials 
(LFP, ECoG, EEG) arise from the aggregate synaptic and spiking 
activity of the underlying neurons within the field of the electrode 
[43; 57].  The temporal structure or waveform is therefore grossly 
reflective of the underlying spatiotemporal patterns of neuronal 
activity and holds meaning about the internal state. It thus follows 

that the diversity of patterns of the measured waveform is likely 
to bear strong relation to the number of spatiotemporal patterns 
of underlying activity.  

Complexity, when considered as diversity of the waveform 
structure, is very closely related to entropy.  Typical measures 
of EEG signal entropy involve its decomposition into either its 
spectral or wavelet components followed by a subsequent analysis 
of the diversity of these components, and have been found to 
have relationships to both depth of anesthesia and disease states 
[58; 59; 60].  Motivated by studies that demonstrate stimulus 
related changes in the structure and synchrony of waveforms 
in short epochs [43] and the loss-less transmission of complex 
waveforms that are related to behavior [42; 53],  our measure 
is related to these measures of entropy, but is constructed 
on the premise that it is the whole waveform structure that is 
important (and therefore the interspersion of spectral and 
wavelet components).  One might imagine the analogy to a line 
of text where the relative positioning and spacing of letters is 
what confers meaning as opposed to how many of each letter 
there are.  Our measure thus maintains the signal in its intact 
form, identifying the diversity of complex waveform patterns in 
the signal.  A complete description of this measure of complexity 
and the factors considered in its definition are described in the 
methods, along with supplementary figures.  By definition our 
measure could span a range from 0 to 100 where a flat line would 
be 0 and both white noise and a structured highly non-repetitive 
pattern over our measurement would be 100. Measured in this 
way, complexity spanned a ~2.75-fold range across our sample 
with values from 35 to 96 (Fig. 1A). 

Relation of CT to measures  
of Spectral Properties and Entropy
The greater the number of distinct waveform patterns in the 
system, the greater the complexity. To create a larger number 
of waveform patterns however, one must necessarily have a 
wide range of frequencies with various phase relationships.  We 
therefore looked at the relationship between our complexity 
measure to the relative power in the different frequency ranges 
delta (1-4 Hz), theta (4-7.5 Hz), alpha (7.5-14 Hz), beta (14- 30 
Hz) and gamma (30+ Hz).  As would be expected, we found that 
higher temporal complexity was generally associated with a higher 
fraction of frequencies above 4 Hz, although none of the higher 
frequency bands were more specifically related to the measure (R2 
of linear fit 0.19 for both theta and gamma, 0.41 for beta and 0.44 
for alpha). Conversely, this was accompanied by a concomitant 
decrease in the delta power (R2 of linear fit 0.54).  This pattern is 
easily visualized in Fig. 1C showing the summed power in each 
frequency band for each participant ordered by complexity.   

We then compared the spectral entropy of the signal (the Shannon 
entropy of the power spectrum, see methods) to our measure of 
complexity (Fig. 1B).  The two measures were positively correlated 
(r=0.66) but had a nonlinear relationship, an indication that the 
measures were related but yet carried different information. For 
instance, people with low spectral entropy values of 0.45 could 
have complexity values ranging from 40 to 80 indicating that 
the diversity of patterns constructed from the same spectral 
composition varied substantially.
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Complexity, Socioeconomics  
and Modern Experience
We next explored whether the complexity of the EEG reflects 
the divergent complexity of human experience in the transition 
from pre-modern to modern society.  To do so we compared the 
complexity of different groupings of income and experience.  

Before describing these results, however, we note that our study 
involves comparison of the complexity of the resting EEG signal 
from just a 3-minute snapshot across a large number of people.  
It is thus possible that the variation in CT across the population 
was simply a function of intra-person variability arising from 
differential placement of electrodes or state of mind at the time of 
recording.  We therefore examined the variability arising within 
20 individuals across 10 sessions conducted at various times over 
a one week period to determine levels of statistical significance in 
differences among random groups drawn from the average intra-
person distribution (described in detail in Methods, Sup. Fig 4). 

The probability of a difference in the mean between two groups 
being ≥5 CT points was less than 5% for both equal and unequal 
groupings of sizes similar to our experience groupings.  More 
significantly, the probability of choosing groups with a difference 
in mean of 2.5 points or higher that was statistically significant at 
a 0.05 level by a t-test was 2x10-3 at the highest (Sup Fig. 4F inset).  
Thus it would be safe to assume that statistically significant results 
of 2.5 CT points or higher obtained between groups of people 
along different experiential criteria would be highly unlikely to 
arise as a consequence of trial-to-trial variation within individuals. 

We first compared gender and age groupings. Our sampling 
was such that each income group in our sample was equally 
distributed across males and females and decadal age groups, thus 
comparisons along these dimensions would not be likely to reflect 
second order differences along other dimensions. 

The distribution of EEG complexity of males and females were 
not significantly different (Fig. 2A) with mean ± SEM for males at 
74.07±0.96 and Females at 72.11±0.98 (p>0.15 both KS test and t-test).  

6

Figure 1  -  COMPLEXITY AND SPECTRAL PROPERTIES 

A Distribution of CT (n = 750 ms,  
sampling @128 Hz) across all participants.

B CT vs. Spectral Entropy across channels for all 
participants shows a nonlinear relationship.

C Relative power of spectral components from delta to gamma for each 
participant ordered from lowest to highest CT. Correlations shown on right.
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Similarly there was no significant difference between any successive 
decadal age groups (Fig. 2B; mean ± SD age 21-30: 75.09±1.16, 30-
40: 71.99±1.31, 40-50: 73.97±1.45, 50-60: 70.35±1.61, 0.18<p<0.6 
by KS test, ANOVA F = 2.23 p = 0.08 old), although the 21-30 age 
group was significantly higher than those 51-60 (p=0.02).

We next divided the population into three groups along a dimension 
of modernity (Fig. 2C):  (i) Pre-modern, referring to those with 
primary education or below and limited use of technology (no 
mobile phone, internet or owned vehicles), (ii) modern, referring 
to college educated with extensive use of mobile phones, internet 
access and owned vehicles, and (iii) transitioning, referring to those 
at various stages of education and technology use between these 
two extremes. Complexity of the pre-modern, transitioning and 
modern groups were (mean±SEM) 71.53±2.65, 72.07 ±0.73 and 
86.23±1.53 respectively. Pre-modern and transitioning populations 
were not significantly different (p=0.97 by KS test). In contrast both 
were dramatically distinct from the modern group (p= 1.8 x 10-5 
t-test, 6.1 x 10-9 by KS test). The dramatic shift of the modern group 
suggests a distinctly non-linear jump in complexity at a certain 
threshold of modernity.

Given that much of modern experience is enabled by income, we 
next looked at the difference in CT across different income groups 
(Fig. 2D). We found a similar pattern whereby the population with 
family income below $10/day and between $10 and $30/day were 
largely similar with means±SEM of 71.82±0.74 and 72.9±2.82 
respectively (p=0.37).  In contrast, the group with incomes of >$30/
day had mean±SEM of 85.28±1.68, dramatically different from both 
other groups (p=3.5 x 10-10 t-test, 1.8 x 10-5 KS test), once again 
suggesting that the increase in complexity is not linear.

To probe in more depth the factors that contributed to this 
difference we binned participants more finely along various income 
and experience dimensions (described in Sup. Table 1) and looked 
for systematic trends in the population complexity (shown are mean 
± SEM of CT)(Fig. 3). However given that these were trends across 
a number of bins, for further assessment of their significance and 
likelihood that they were a consequence of intra-person variability 
we computed the significance of an ANOVA across these bins 

(pANOVA) and compared it to the probability of finding a similar 
trend from shuffling the CT values across the participants 1000 
times including the probability of obtaining (i) a significance level in 
the ANOVA that was less than 0.05 (pshuff1), (ii) a significance level 
in the ANOVA that was less than the p-value of the data (pshuff2) and 
(iii) the probability of finding a shuffled iteration that was positively 
correlated to the trend in the data (pshuff3) (detailed in Methods).  
While differences between specific groups and the ANOVA are 
shown in the text with standard statistics between groups, the 
comprehensive trend statistics are shown only in Table 1.
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No. Life Context 
Factor Figure Range              

(Max -Min) 
P-value           
(Max, Min) 

P-shuff1 P-shuff2 P-shuff3

1 Age 2A 5 2.40E-02 6.2E-02 9.6E-02 3.1E-02

2 Gender 2B 3 1.60E-01    

3 Modernity 2C 15 1.80E-05 5.8E-02 0.0E+00 3.4E-02

4 Daily Family 
Income (USD) 2D 13 3.50E-07    

5 Daily Family 
Income (USD) 3A 21 7.02E-03 5.8E-02 0.0E+00 5.1E-02

6 Daily Individual 
Income (USD) 3B 14 5.93E-03 5.8E-02 0.0E+00 2.0E-02

7 Years of 
Education 3C 18 8.54E-04 5.1E-02 0.0E+00 0.0E+00

8 Geofootprint 
Past Year 3D 21 6.80E-06 3.8E-02 0.0E+00 4.8E-02

9 Geofootprint 
Life 3E 18 4.31E-09 3.8E-02 0.0E+00 4.8E-02

10 Geofootprint 
Family/Friends 3F 6 6.31E-03 6.2E-02 0.0E+00 1.0E-02

11 Mobile Phone 
Spend 3G 11 1.68E-05 6.6E-02 0.0E+00 1.0E-01

12 Fuel Spend 3H 14 1.49E-01 6.8E-02 1.0E-02 3.7E-02

13 Electricity 
Spend 3I 7 2.68E-01 5.5E-02 7.9E-02 3.1E-02

14 Name Task 
Score 5A 19 6.34E-05 4.1E-02 4.1E-02 5.5E-02

15 Pattern Task 
Score 5B 29 5.14E-04 3.1E-02 0.0E+00 1.4E-02

Table1

Figure 2  -  DISTRIBUTIONS OF COMPLEXITY FOR AGE, GENDER, MODERNITY AND INCOME  

A Cumulative distributions 
of CT for males (solid line) 
and females (dotted line) 
sampled equally across 
socioeconomic groups.

B Distributions of CT 
across decadal age 
groupings from 20s 
to 60s also sampled 
roughly equally across 
socioeconomic groups.

C Distributions of CT of pre-
modern (low education, 
low tech), modern 
(higher education, high 
tech) and transitioning 
populations.

D Distributions of CT of 
family income groups 
of <$10/day, $10-$30/
day and >$30/day.
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INCOME

Consistent with the nonlinear jump in CT in Fig 2D, the relationship 
between CT and income was best fit by a logarithmic function 
(Fig. 3A,B R2 = 0.71 for Family Income and 0.67 for Self Income, 
ANOVA F = 6.08 p = 9.9 x 10-7 family income and F= 5.88 p =1.9 x 
10-6 individual income), indicating that the population CT shifted 
sharply to the right with increasing family income up to ~$30/day 
and increasing individual income up to about ~$17/day, leveling 
out thereafter.  The difference in complexity between the lowest 
and highest income groups was 21 points. We note however that 
between the range of $3 and $10 where the largest fraction of our 
sample (and humanity) resides, there was no significant difference.

EDUCATION

Education represents the most formalized access to knowledge of 
increasing complexity.  Indeed mean CT of the population scaled 
systematically with years of education and could be best fit by a 
linear function (Fig. 3C, R2 = 0.70, ANOVA F = 4.55 p = 8.1x10-7) 
with an 18-point difference in the mean between unschooled and 
college-educated groups (16 years). We note that those who drop 
out of school at various stages without going to college, tend to 
have gone to lower income government schools where standards 
of education are relatively poor, while the college goers have also 
had the benefit of a better private schooling. This could be a major 
reason for the greater variance and the sharper increase from 12-
16 (college) years relative to 1-12 years of education. 

GEOFOOTPRINT

Geofootprint refers to the distance a person has traveled in the world 
or the geographical space of exploration.  Travel is highly dependent 
on access to modern transport and requires a wide repertoire 
of ability from planning to spatial navigation to navigating new 
languages and cultures. This measure thus stands as gross proxy 
for an integrated range of different stimuli that a person is likely to 
have encountered in their lifetime. To get an approximate measure 
of a person’s geofootprint we classified their travel into six categories 
reflecting the distance and complexity of their travel. Category 1 
referred to no travel outside of ones hometown, 2 referred to trips 
to places that were less than 100 km away and within the same State 
and were typically a day trip, Category 3 referred to trips to places 
that were within the same State but more than 100 km away and 
therefore required overnight stay and more planning.  Category 4 
was to another State, and 5 was out of the country.  Crossing State 
borders in India represents a transition into a different language and 
culture and therefore adds a significant layer of complexity. We then 
identified the category that defined the maximum extent of their 
travel in the last year as well as in their lifetime. We also identified 
the category that defined the maximum geographic range of their 
social network (Farthest friends and family).

Mean CT scaled systematically by 3 or 4 points for each successive 
category of geofootprint (Fig. 3D,E, ANOVA F = 11.35 p = 9.1 x 10-9 
past year, F = 13.27, p = 2.9 x 10-8 life).  Populations with overseas 
footprints within the last year however had CT values 8 point 
higher than those who had not left the country, while populations 
with overseas footprints over their entire lifetime had CT values 6 
points higher than those who had never left the country.  Overall, 
the difference in CT between populations who had never left their 
hometown to those who had traveled overseas in the last year or 

their lifetime was 21 and 18 points respectively. In contrast, there 
was a far less significant difference between populations with 
geographically wider social networks with only category 5 (overseas 
family or friends) having any significance (Fig. 3F, ANOVA F= 5.55 
p = 2.4 x 10-4). 

COMMUNICATION TECHNOLOGY

We also looked at mobile phone and Internet usage.  Since all users 
of the Internet in our sample were college educated and had similar 
hours of usage, we were unable to make any useful comparison. 
This is therefore excluded. However we found that populations with 
increasing mobile phone usage were not substantially different until 
the level of usage went beyond 300 Rs. (~$5) per month (equivalent 
to ~ 300 minutes of talk time or 1.25GB of data transfer per month) 
at which point there was a dramatic jump in CT of 8 points (Fig. 
3G, ANOVA F= 4.65, p = 1.6 x 10-4).  Note the logarithmic trend, 
similar to income.

FUEL CONSUMPTION

Fuel stands as a proxy for daily activity and local travel. Here again 
we found no significant change in CT as a function of increasing 
fuel consumption until fuel consumption was $128/month or more 
(Fig 3H, ANOVA F = 3.78 p = 0.003) where CT was 8 points higher 
than all values at lower fuel consumption. Overall the effects were 
significantly less than for Geofootprint, income and education.

ELECTRICITY CONSUMPTION

Finally, we looked at CT as a function of electricity consumption. 
There was some evidence of a threshold dependent trend as seen 
for mobile spend with a greater likelihood of an increase when 
electricity consumption exceeded ~$32/month, however the effects 
here were not significant (ANOVA F= 1.94 p = 0.071).

Overall, the statistics were highly significant (Table 1) with very 
small probabilities that these patterns could have emerged simply 
from intra-person or sampling variations of the populations.  
Finally we note that both the related measures of spectral entropy 
and delta fraction had directional similarities but without the 
consistent statistical significance of this measure (not shown).

PARSING THE CONTRIBUTIONS  
OF INDIVIDUAL FACTORS

Taken together our results suggest that the complexity of the 
EEG reflects a host of economic and experiential factors, most 
significantly income and travel. Income serves as a universal enabler 
for the experiential factors of education, travel, communication and 
energy consumption.  People with higher income therefore have 
greater access to all elements, and all factors would likely strongly 
co-vary with income.  Thus while there were clear shifts in the mean 
population CT as a function of most experiential factors, it is not 
clear how much each factor contributes independent of the others. 
Indeed all of the factors we considered were positively correlated with 
one another, with income most tightly correlated with education 
and mobile phone use (Fig. 4A).  In contrast, geofootprint (travel 
year and life) had the weakest correlation with income, education 
and other factors.  The systematic shift in the population mean of CT 
with geofootprint was evident even when separated by income (Fig. 
4B) or education (Fig. 4C) categories, and was apparent even for the 
high income and education groups although they spanned only two 
of the travel categories (geofootprint 5 or 6).   
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A Mean±SEM of CT for populations 
within each family income bin with 
logarithmic fit (R2 = 0.71). Open circles 
show average of random shuffling of 
CT values across the sample.

C CT as a function of years  
of education. 16 indicates  
college graduates and above.  
R2 of linear fit is 0.70.

B CT as a function  
of individual income  
(R2 of logarithmic fit: 0.67).

D CT for categories of increasing geo-
footprint in the last year (1= never left 
home town, 2 =<100 km within same 
State, 3 =>100 km within same State, 
4 =  To a different State, 5 = Out of 
country; note that States in India have 
different language and culture).

F CT as a function of farthest 
distance of friends and family 
(Categories same as (D)).

E Same as above but for 
lifetime geo-footprint.

G CT as a function of monthly 
expenditure on mobile phone 
usage. Note that bins are 
logarithmic (base 5).

I CT as a function on monthly 
expenditure on electricity.  
Note that bins are logarithmic 
(base 2).

H CT as a function of monthly 
expenditure on fuel 
(gasoline). Note that bins 
are logarithmic (base 5).

Figure 3  -  SCALING OF COMPLEXITY WITH VARIOUS EXPERIENCE FACTORS 
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We next performed a principal component analysis to identify any 
further dimensions of experience that could be disaggregated from 
one another, and income in particular (see Methods for details). 
The first principal component (Comp1), where all factors of 
experience essentially co-varied with income, accounted for 
approximately 47.54% of the variance in CT (Fig. 4D). The second 
component (Comp2) contributed 14.24% of the variance and was 
dominated by travel (geofootprint), while all other factors made 
little to no positive contribution (Fig. 4E).  Thus travel appears to 
be an experiential choice that is more individual and independent 
relative to all other factors. We next looked at CT as a function 
of individual scores constructed for each of these components 
(Fig. 4F).  Indeed CT scaled systematically as a function of both 

components (R2=0.94, PANOVA p = 2.3 x 10-9 (Comp1), R2 = 0.96, 
PANOVA 4.6 x 10-10 (Comp2)).

COMPLEXITY AND FUNCTIONAL CAPACITY
A major question that arises when attempting to interpret these 
results is the relationship between this measure of complexity (CT) 
and the functional capacity of the individual. While this warrants in 
depth investigation with respect to various dimensions of cognition, 
we made a rudimentary first attempt to quantify two functional 
aspects, namely the speed of free recall of names of people or 
places and the ability to recognize patterns (Fig. 5). These tests were 
administered on the same day as the EEG recording but were not 
simultaneous with the recording, which required the participant to 
be still with their eyes closed.

10

A Correlation matrix for socioeconomic 
and experience factors.  Income, 
Fuel, Phone and Electricity are 
log transformed (base 5) before 
computing correlation.

D Proportion of variance of 
socioeconomic and technology 
factors contributed by each principal 
component. The first and second 
components contribute 47.54% and 
14.24% respectively.

Figure 4  -  PARSING OUT EFFECTS OF EXPERIENCE FACTORS FROM INCOME

C Same as in B. but for the lowest 
and highest education categories 
(≤ 5th grade and college).

F CT as a function of the first two 
components (Mean±SEM).  CT 
increases systematically with 
increases in the first (all factors) 
and second components (travel 
dominated).

B CT as a function of geofootprint 
within the past year (see code 
in 3D) for the lowest (<$10/day) 
and highest incomes categories 
(>$30/day) (Mean±SEM).

E Circle of correlation of second 
component versus the first 
component shows domination of 
travel in the second component 
with little or no contribution of 
income and other factors.
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NAME RECALL

This test, which we administered only to people with writing literacy 
(n = 346) required writing as many names of people and places as 
possible within a one minute period.  We note that this could reflect 
a larger pool of names available for recall, a faster rate of retrieval 
and/or greater motor facility and is a coarse test at best.  

Here we found that CT increased only slightly as the number of 
names recalled increased from 10 to 50 but then grew dramatically 
higher beyond (Fig. 5A). The overall trend was not significant 
(ANOVA p = 0.12), however the group with scores >60 had an 
average CT value 12 points higher than the 50-60 names group  (p = 
6.3 x 10-5) and 19 points higher than the 0-10 group. The nonlinear 
trend hints that higher CT may be associated with non-linear gains 
in this cognitive function. However, the relatively low correlation of 
the raw scores to complexity (r = 0.12 p = 0.018) suggests that this 
measure is at best an indirect measure of recall or retrieval speed.

PATTERN COMPLETION

The pattern completion test used a modified and abridged version 
of the Raven’s progressive matrices and consisted of five multiple 
choice questions of increasing difficulty, a sample of which is shown 
in Fig. 5C.  The test was administered to 28 people across two 
locations (one urban and one rural).  The patterns were visual in 
nature and required no formal verbal or numerical literacy beyond 
counting to 10.  Unlike name recall, we found that EEG complexity 
scaled linearly with test scores. The correlation between complexity 
and raw scores of all 28 people (not shown) was 0.66, (pr = 1.5 x 
10-4), while the shift in mean complexity within each score group 
(Fig. 5B) followed a linear trend with a correlation of 0.93 (pr = 
0.006, pANOVA = 0.007 and R2 of linear fit of 0.43).  We note that this 
was a far stronger relationship compared to the related measure of 
spectral entropy where the correlation was 0.4 (pr = 0.03).  

All together this suggests that our measure of complexity strongly 
reflects both experience and cognitive function.

DISCUSSION
The brain lies at the core of our sense of what is human.  Most of 
the understanding we have built thus far, however, comes from 
work done in the developed world, and with subjects that are, most 
often, university students representing only a very small privileged 
fraction of humanity.  The implicit assumption is that findings from 
these studies extend easily to all of humanity. 

This study is the first of its kind, extending far beyond the 
populations that reside around universities and into populations 
relatively untouched by modern advances, with four important 
results.  First, the complexity of the EEG signal varies several-
fold across individuals. Second, the complexity of the signal is 
nonlinearly related to the increasing complexity of modern living 
as well as to income.  The relationship with income is logarithmic 
in nature similar to that reported between income and brain surface 
area for a study conducted in the United States [30].  Given the 
structure of this relationship parity in complexity was roughly 
achieved at a family income of ~$30/day or individual income of 
$17/day.  Third, geofootprint or travel of the individual has the most 
dramatic independent contribution to complexity relative to all 
other factors including education.  Fourth, complexity is strongly 
correlated with scores on a pattern completion task (and weakly 
with memory retrieval) indicating that higher complexity implies 
clear cognitive gains. Taken together, these results demonstrate a 
wide range in the dynamical complexity of the human brain that is 
profoundly related to socioeconomic context and geofootprint and 
has cognitive relevance.  

We note poignantly that 80% of the world’s population falls below 
the threshold of $30/day of family income beyond which EEG 
complexity distributions show parity across incomes. 

A crucial question that arises is therefore the direction of causality 
– does higher complexity confer higher income or does higher 
income confer higher complexity?  Does travel increase complexity 
or does higher complexity spur greater travel and exploration?  

Figure 5  -  COMPLEXITY AND COGNITIVE TESTS 

A CT as a function of number of 
places recalled within 60 seconds 
(Mean±SEM).

C Example of one question  
in the pattern completion test.

B CT as a function of scores on a 
5-question pattern completion test.  
(r =0.93, p =0.006 and R2 (linear fit) 
= 0.87 for population means; r =0.66, 
p =0.0005 and R2=0.43 for raw data 
(not shown here))
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The malleability of complexity and functional capability with 
different dimensions of experience is a critical question that must 
be addressed going forward, with significant implications for how 
we might approach a global development agenda. Indeed, although 
it was once thought that the adult human cortex was not capable 
of substantial rewiring, there has been mounting evidence to the 
contrary [10; 61; 62; 63].  Thus while a greater ability to make sense 
of new situations and patterns may propel greater geo exploration, 
such exploration will likely in turn enhance complexity, leading to 
meaningful cognitive benefits.  In this construct interventions that 
lower barriers to physical mobility may deliver the most meaningful 
gains by allowing people to explore a wider range of environments, 
and warrants deeper investigation. 

Finally our study warns against extending results obtained from 
small or socioeconomically limited groups to global populations.  
We also note that our study demonstrates that, with new cost-

effective technologies available, it is possible to take neuroscience 
investigation out of the lab and to a much larger global population. 
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A 48 settlements in Tamil 
Nadu, India where data was 
collected.

D Distribution of daily self- or individual 
incomes among participants (Note 
log scale on x-axis).

C Distribution of daily family income 
among participants (Note log scale 
on x-axis).

F Map of electrode positions  
in the Emotiv EPOC.

B Distribution of populations of the 
48 settlements (Note log scale on 
x-axis). 

E Distribution of years of education 
of participants (1 = 1st grade, 16 
= college graduates and above).

Sup. Figure 1  -  SAMPLING ACROSS A BROAD RANGE OF HUMANITY
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A Cumulative distribution of diversity of 
waveform segments of length t=750 
ms (|1-rn|*100, n=96) for each each 
electrode in one participant (grey line).   
Black line is the mean across electrodes.  
Value corresponding to median 
(dotted line) is defined as the temporal 
complexity (CT) for that individual.

D Coefficient of Variation (CV%) of CT 
across all participants computed 
with increasing segment duration 
from t = 100 to t = 1250 ms (solid 
line) Dotted line shows CV% for the 
amplitude shuffled signal. t=750 ms 
used in all cases going forward.

C Mean CT across all participants 
computed for varying segments 
from t = 100 to 1250 ms is 
significantly lower for the 
recorded signal (solid line) 
compared to the amplitude 
shuffled signal (dotted line).  

F CV% of CT across all participants for 
the intact (solid line) and amplitude 
shuffled signal (dotted line) as a 
function of sampling frequency.

B Cumulative distribution of the 
complexity of each channel 
averaged across all participants 
(grey lines). Black line is the 
global mean across all channels.

E Mean CT across all participants 
computed with signal of varying 
sampling frequency from 12 to 
128 Hz (solid line). Dotted line 
shows mean CT for amplitude 
shuffled signal.

Sup. Figure 2  -  DEFINING A MEASURE OF COMPLEXITY
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Sup. Figure 3  -  COMPARISON OF THE EMOTIV EPOC TO NEUROSCAN 

A Average power 
spectrum of the signals 
simultaneously recorded 
with the Emotiv EPOC 
and Neuroscan (n=5, all 
subsequent panels).

B Mean CT computed 
with different signal 
sampling frequency 
in the EPOC and 
Neuroscan.

C Mean CT computed 
with varying segment 
duration in the EPOC 
and Neuroscan.

D CT computed for duration 
t=750 ms and sampling 
frequency 125 (NS)/128 
(EPOC) Hz in the Neuroscan 
(NS) vs. the EPOC (R2=0.62, 
solid line = fit, dotted line 
shows y=x)
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A Distribution of cross-channel CV%  
of participants.

D CV% of intra-person CT vs. 
mean CV% of inter-channel CT 
for the same people (n=20).

C Inter-channel (open circles, n=400) 
and Intra-person (closed circles, n=20) 
CV% versus CT.  Inter-channel CV% 
was lower on average for participants 
with higher CT implying that lower 
CT was also associated with more 
variability across the brain. In contrast.

F Probabilities of difference in means 
between groups of equal size of 30 
and unequal size of 30 and 60 drawn 
randomly from the intra-person 
distribution in D.  Inset: Probabilities 
of difference in means with p-value 
<0.05 by t-test.

B Distribution of intra person 
variability shown as CV% for 20 
individuals for whom 10 separate 
recordings were done over a one 
week period.

E Average peak-subtracted 
distribution of intra-person 
variability of CT.

Sup. Figure 4  -  INTRA-PERSON VARIABILITY OF CT 
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Sup. Table 1

No. Feature Description

1 Family Income 
Monthly income in Indian Rupees of the total household income.  60 Rs = $1.  50,000 Rs. is 
~$850 or $28 per day.

2 Individual Income The individual’s self-earned monthly income in Indian Rupees.

3 Education Level
Number of years of completed education.  Of those who attended college, all in the sample 
completed it. Note all college grads are marked as 16 years of education, although some 
attended 3 year college.

4 Geofootprint (Past year)

This indicates the distance from home they have traveled in the one year before the date of 
survey.  The question was asked in the form of the following categories:
1: Within home town
2: Within 100 km from hometown in the same State (typically a day trip)
3: >100 km from hometown in the Same State(typically requires overnight stay)
4: Within 100 km from hometown to a different State (note that State boundaries in India are 
based on language so different State indicates a different language) 
5: >100 km from hometown to a different State
6: To a different country

5 Geofootprint (Lifetime)
This indicates the distance from home they have ever traveled in their life for any reason at 
any age. The categories are the same as above.

6 Farthest Friends or Family
This indicates the furthest distance from home that they have either friends or family, 
essentially an indication of the geographic distance of their social network. The categories are 
once again the same as above.

7 Fuel Usage

This refers to the amount they spent on purchasing petrol or gasoline in the previous full 
month shown in Indian Rupees.  The price of petrol was ~ Rs. 75/liter or $4.75/ gallon at the 
time of survey.  The range of fuel purchase ranged from 0 (no vehicle) or going from 1 liter 
all the way to 160 liters or 42 gallons, translating to miles traveled in the month of anywhere 
from 20  to  1500.

8 Electricity Usage

This refers to the amount they spent on household electricity in the previous full month shown 
in Indian Rupees.  The price of electricity at the time of survey ranged from  Rs. 1 to Rs. 4 per 
unit or kWH.  The tariff was a sliding scale with lower prices for those consuming lower levels 
of electricity.  Consequently an exact conversion to units consumed was not readily possible. 

9 Mobile Phone Usage
This refers to the amount spent on mobile phone communication in the previous full month 
shown in Indian Rupees.  

10 Internet Usage
Here we asked for hours of Internet use.  However, since it was used only by highly people 
with income >50,000 Rs. per month, the data was insufficient to make relevant comparisons. 
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