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ABSTRACT
We have previously shown that the complexity of human brain activity and 
the emergence and strength of alpha oscillation as measured by EEG scale 
dramatically with access to the features of modernization.  Here we show that 
these features of the EEG, while correlated to one another are distinct in their 
origin and that while complexity is most strongly related to travel or geofootprint, 
energy of the alpha oscillation scales more systematically with fuel consumption.  
Finally, composite EEG scores representing the dominant principal component 
scale in remarkable lockstep with the dominant component of the features of 
modernization. This demonstrates that human brain dynamics, and therefore 
cognitive outcome, are profoundly and systematically tied to the context of life 
experience. Indeed the implication is that ‘normal’ brain function is not absolute 
and can only be considered in relation to or conditional on the context in which 
it is embedded.

INTRODUCTION
The core of modernization involves technologies and social structures that extend and expand the 
rate and scope of human interaction and experience.  These include agglomeration into dense urban 
structures, expanded formal education systems and significant technologies such as electricity, 
telecommunications and motorized transport.  Modernization has also brought with it a growing 
income inequality that results in substantially different levels of access to modern experience.         
Given that the human brain is an experience dependent organ that continually reconfigures itself in 
response to stimulus [1-4], such wide differences in experience along these dimensions have a dramatic 
impact on fundamental aspects of brain dynamics.  A host of studies have shown that lower income 
and education are associated with structural differences in the brain [5-11] and that environmental 
enrichment in animal studies is associated with a vast array of cellular and molecular changes [12-17].   
Further, we have shown in two companion papers that populations with access to higher levels of 
modernity have significantly higher complexity of the EEG signal [18] as well as dramatically stronger 
presence of alpha oscillations [19].  Here we present a detailed analysis of the relationship between 
the features of the alpha oscillation and complexity, and in turn, their relationship individually and in 
composite with various individual factors of modern context as well as their principal components.  

Our sample comprised 402 adults between the ages of 21 and 65 from 48 locations in India including 
remote settlements of just 300 people with no electricity or motorized transport, to cities of several 
million people with all modern amenities, and spanned a range of annual incomes from $300 to 
approximately $150,000 dollars, translating to daily incomes of $0.82 to ~$410.  Correspondingly 
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our sample spanned a spectrum from people living in pre-
modern conditions with no formal education, phones, motorized 
vehicle or electricity to others who were college educated, digitally 
connected and internationally traveled.  Our measures include the 
population of the place of residence, income, education, the farthest 
distance traveled from home (travel or geofootprint) and monthly 
expenditure on telecommunication, vehicle fuel and electricity (see 
Table 1 in [18]).  Each of these factors represent structures or tools 
that expand access to interactions and experiences and therefore are 
proxies for the rate and breadth of exposure of the brain to stimuli.

Here we explore the relationships of each of the EEG features to one 
another and to individual and composites of each of the contextual 
features that describe the various components of modern 
civilization.  Our results show that each EEG feature is distinct and 
has highly significant relationships with many of the contextual 
features with differing patterns.  Finally we show that composite 
scores of EEG activity derived from principal components of the set 
of EEG features move in remarkable lockstep with composite scores 
of modern experience derived from principal components of the 
set of contextual features demonstrating a very clear relationship 
between brain dynamics and life context.

MATERIALS AND METHODS

Sampling, Survey and EEG Recording
The survey methodology and sampling were carried out as 
described in a companion paper [18].  Briefly, participants 
answered a series of questions regarding their demographic, 
communication and mobility behavior in addition to having EEG 
recorded for three minutes when they were seated with their eyes 
closed.  All participants were explained the purpose and protocol 
of the experiment and signed an informed consent.  The EEG 
recordings were carried out using the Emotiv EPOC device, after 
comparison to the clinical grade Neuroscan device for similarity of 
results, again as described in [18].

Principal Component Analysis
Principal Component Analysis was done using the FactomineR 
PCA function.  Prior to application of the PCA function, all records 
without values in any one of the columns were removed from the 
analysis (121/402 records).  Prior to performing the PCA all data 
components with highly skewed distributions approximating 
lognormal were log transformed with log base 5 to create linear 
relationships among the variables. This included Income, Fuel 
Spend, Phone Spend, Electricity Spend and Population among the 
contextual variables, and Eα from the EEG features.  The circle of 
correlations shown represent the unit scaled coordinates of the 
components. The component scores for the EEG and context of 
each individual were calculated as the sum of the contribution of 
each element multiplied by the unscaled individual element. 

Statistical Significance of Trends
All trends are shown as population means ±SEM for each bin 
along the ordinate axis thereby depicting a trend of the shift in 
the population distribution.  We calculated various statistics to 
determine the significance of these trends.  First we calculated 
the R2 of logarithmic, exponential and linear fits, reporting the fit 

with the highest R2 value.  We next computed the significance of 
an ANOVA (pANOVA), which would provide the probability of a 
difference across the various bins. To determine the likelihood of 
such a trend appearing that could not be accounted for by intra-
person fluctuations, we also computed the probability of finding a 
similar trend from shuffling the CT values across the participants 
1000 times including: (i) the probability of obtaining a significant 
ANOVA in the shuffled iterations that was ≤ 0.05 (pshuff1) or (ii) ≤ 
the p-value of the data (pshuff2) and (iii) the probability of finding a 
shuffled iteration with a trend that was positively correlated with 
p<0.05 to the data (pshuff3).

RESULTS

Relationships among EEG Features 
Here we look at the relationship among the three EEG features 
to determine how they are related.  It is possible that the various 
features of the EEG signal are different aspects of a common 
underlying influencer and therefore strongly correlated.  On the 
other hand given that an oscillation is a repetitive structure and 
complexity is a measure of diversity, a strong alpha oscillation (i.e. 
with high energy Eα and high peak frequency Pα) would reduce 
the complexity of the structure and may therefore be negatively 
correlated with complexity. 

Fig. 1A shows a scatter plot of CT vs. Pα for all participants in our 
study along with the mean CT ±SEM (in black) for the population 
in 0.5 Hz bins of Pα . Contrary to the expectation, mean CT 
increased systematically with Pα (R2 of  a linear fit of the population 
means was 0.61 with slope = 1.78).  However the overall correlation 
between Pα and CT was positive but very low (r =0.2).  Indeed 
individuals had a broad spread of CT values for each value of Pα 
and a participant with no detectable oscillation could have a CT 
value spanning the entire range of possibilities from 35 to 90. The 
structure of this relationship indicates that these two features are 
likely to be independent in their origin though may be influenced 
by some common drivers.

We next looked at the relationship between CT and Eα (Fig. 1B).  
Here again the correlation of the two features across all participants 
was positive but weak (r = 0.43).  People with very low values of 
Eα reflecting the absence of an oscillation, had CT values spanning 
the entire range.  However unlike the case of Pα , while the range of 
CT values was higher for those who did have the oscillation (and 
therefore Eα values above 40), the population means did not change 
substantially as Eα increased beyond this level (R2 of linear fit = 0.33, 
Slope = 0.01) indicating, again, distinct origins and influencers of 
complexity and the features of the alpha oscillation.

Finally we note that the two features of the alpha oscillation, Pα 
and Eα are also only very weakly correlated (r= 0.09, Fig. 1C) and 
therefore represent two distinct features of the oscillation.  Indeed 
while Pα is distributed normally, Eα has a substantially different 
long tailed distribution demonstrating distinct structures and 
origins.  This relationship is shown in our previous paper (Fig. 3E; 
Alpha Energy).  Mean Eα had a U-shaped relationship to Pα with 
the highest values at ~11 Hz in the middle of the alpha range.  This 
U-shape could not be accounted for by a boundary effect of the 
range suggesting that there may be an optimal Pα.
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Figure 1  -   RELATIONSHIP BETWEEN EEG FEATURES

A Complexity (CT) versus alpha 
oscillation peak frequency (Pα) for 
each individual in the sample (small 
dots).  Large circles show mean CT 
± SEM for bins of 0.5 Hz.

C Alpha oscillation peak frequency 
(Pα) versus Energy (Eα) for each 
individual in the sample (small dots).  
Large circles show mean CT ± SEM 
for bins of 0.5 Hz.

B Complexity (CT) versus alpha 
oscillation energy (Eα) for each 
individual in the sample (small dots).  
Large circles show mean CT ± SEM 
for bins of 50 energy units.
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Principal Component Analysis of EEG Features 
and Context Factors
We next performed principal component analysis to identify 
orthogonal components among both the EEG features (Fig. 2A,B) 
and the contextual factors (Fig. 2C,D) of the participants. Contextual 
factors refer to the life factors such as education, technology use and 
others that we have captured; essentially the context in which the 
participant lives.

The first component of the EEG features explained  ~55% of the 
variance in the sample and represents the correlation of all three 
features.  The second component explained ~30% of the variance 
and the third component the remaining 14%.  The contribution of 
the factors within the first principal component relative to the second 
is shown as a vector (circle of correlations) with one component 
represented on each of the x- and y-axes.  Fig. 2A shows the second 
component of the EEG features (EEG Comp 2) versus the first (EEG 
Comp 1), and 2B shows the third component (EEG Comp 3) versus 
the first.  These demonstrate that the second component largely 
represents the residual dominance of Pα and the third component 
the residual variance of Eα.

In the case of contextual factors, the PCA was performed using 
8 factors.  While all factors were positively correlated, we have 
previously shown that income, education and phone spend were 
most tightly correlated (Fig. 4A in [18]) while travel or geofootprint 
was least correlated to the other factors. Correspondingly, the first 
principal component (Context Comp 1) accounted for 47.54% 
of the variance where all factors of experience were essentially 
positively correlated with income, while the second component 
(Context Comp 2) contributed 14.24% of the variance and was 
dominated by travel (Geofootprint) (Fig. 2C).  The third component 
(Context Comp 3), shown here versus the second component, was 
dominated by the residual variance of expenditure on vehicle fuel 
and accounted for only ~9% of the variance (Fig. 2D).  We note 
that fuel expenditure is a proxy for more local activity and also the 
speed with which the environment might be experienced, while 
geofootprint represents exploration of new environments including 

navigating new spatial layouts, languages and cultures. 

Going forward, along with the individual EEG features we describe 
the relationships of the scores for each of the first two principal 
components of the EEG features to the scores for each of first two 
components of the contextual factors.

RELATIONSHIPS BETWEEN EEG 
FEATURES AND CONTEXT FACTORS
Here we compared 6 aspects of the EEG signal (EEG features CT, 
Pα, Eα, weighted Pα and composite principal component scores EEG 
Comp1 and Comp2) to 14 contextual or behavioral factors and 
components (11 features of modernization, Pattern Test Score and 
the first two principal components of the context factors Comps 1 
and 2). Given that this results in 6x14 or 84 comparisons, we present 
in the main paper only an overview of the strength and significance 
of all the relationships (R2, significance of an ANOVA PANOVA; 
Figs. 3,4) as well as some of the most significant and interesting 
relationships (Fig.5,6). However, details of all the relationships for 
each of 8 context factors are shown in 9 supplementary figures.
To compute the R2 and PANOVA we performed an analysis of the 
trend with which the population means of the EEG feature or 
component score shifts as a function of an individual context 
factor or component score. The bin sizes for the context factors 
were determined such that the first and last bins (with lowest and 
highest value), where the number of participants was typically 
fewer, had at least 5 data points. We then fit trend lines through 
the means and calculated the R2 for the function with the best fit.  
Typically the functions of best fit were either linear or logarithmic, 
although some exponential and sigmoidal relationships were found. 
We then performed an ANOVA for the groupings, calculating the 
p-value (PANOVA). The R2 and PANOVA together provide views of the 
magnitude and significance of the trend.  We also computed various 
probabilities of positive trends and PANOVA values for shuffled 
datasets (see methods). All statistics for the 25 most significant 
relationships are shown in Table 1. The comprehensive statistics for 
all 84 comparisons are in Supplementary Table 1.
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No. Life Context Factor No. of Groups EEG Feature Best Fit R2 F- ANOVA P- ANOVA Range (Max -Min) P-value (Max, Min) P-shuff1 P-shuff2 P-shuff3

1 Context Comp2 8 Complexity lin 0,96 8,83 4,6E-10 20,5 1,8E-07 5,5E-02 0,0E+00 3,1E-02
2 Context Comp2 8 EEG Comp1 lin 0,95 8,61 8,5E-10 1010,9 1,2E-07 5,8E-02 0,0E+00 2,8E-02
3 Context Comp1 9 EEG Comp1 lin 0,94 7,61 2,0E-09 929,6 5,1E-07 4,1E-02 0,0E+00 3,4E-02
4 Context Comp1 9 Complexity lin 0,94 7,56 2,3E-09 17,9 1,2E-06 4,8E-02 0,0E+00 3,8E-02
5 Geofootprint Past Year 5 Complexity lin 0,90 11,43 9,1E-09 21,2 6,8E-06 3,8E-02 0,0E+00 4,8E-02
6 Geofootprint Past Year 5 EEG Comp1 lin 0,89 11,16 1,4E-08 1092,8 3,6E-06 4,1E-02 0,0E+00 2,7E-02
7 Geofootprint Life 4 Complexity lin 0,94 13,27 3,0E-08 17,9 4,3E-09 3,8E-02 0,0E+00 4,8E-02
8 Geofootprint Life 4 EEG Comp1 lin 0,93 13,11 3,7E-08 891,9 1,6E-09 3,8E-02 0,0E+00 6,5E-02
9 Individual Income (USD) 8 EEG Comp1 lin 0,92 7,05 1,0E-07 113,9 3,7E-03 3,8E-02 0,0E+00 5,1E-02

10 Daily Family Income (USD) 8 Complexity log 0,92 6,08 9,9E-07 21,3 7,0E-03 5,8E-02 0,0E+00 5,1E-02
11 Daily Family Income (USD) 8 EEG Comp1 log 0,93 5,91 1,6E-06 1078,4 9,7E-03 5,5E-02 0,0E+00 4,4E-02
12 Individual Income (USD) 8 Complexity log 0,92 5,88 1,9E-06 13,7 5,9E-03 5,8E-02 0,0E+00 2,0E-02
13 Geofootprint Past Year 5 WtPAlpha lin 0,83 7,80 4,8E-06 6,5 2,4E-06 3,7E-02 0,0E+00 7,6E-02
14 Context Comp2 8 WtPAlpha lin 0,89 5,19 1,2E-05 5,1 1,2E-05 4,8E-02 0,0E+00 1,7E-02
15 Individual Income (USD) 8 WtPAlpha lin 0,83 5,06 1,8E-05 5,1 4,5E-02 4,1E-02 0,0E+00 2,1E-02
16 Geofootprint Past Year 5 Alpha Energy exp 0,85 6,93 2,2E-05 213,8 1,1E-03 4,8E-02 0,0E+00 1,0E-01
17 Years of Education 13 WtPAlpha lin 0,90 3,47 7,6E-05 5,5 7,0E-04 6,2E-02 0,0E+00 6,8E-03
18 Geofootprint Life 4 WtPAlpha lin 0,80 7,23 1,0E-04 4,4 5,7E-06 5,5E-02 0,0E+00 5,2E-02
19 Daily Family Income (USD) 8 WtP Alpha log 0,96 4,10 2,4E-04 5,6 8,4E-02 4,1E-02 0,0E+00 4,8E-02
20 Geofootprint Past Year 5 EEG Comp2 lin 0,81 4,92 7,1E-04 574,0 7,0E-05 6,8E-02 0,0E+00 8,2E-02
21 Context Comp1 9 EEG Comp2 lin 0,89 3,17 1,7E-03 459,3 2,1E-04 6,8E-02 0,0E+00 3,1E-02
22 Fuel Spend 6 EEG Comp1 lin 0,82 3,87 2,4E-03 657,2 2,0E-01 6,2E-02 6,8E-03 5,1E-02
23 Fuel Spend 6 Alpha Energy lin 0,95 3,71 3,2E-03 240,6 3,3E-01 4,8E-02 7,0E-03 1,0E-01
24 Pattern score 6 EEG Comp1 lin 0,87 4,53 5,4E-03 1521,5 1,3E-05 5,1E-02 0,0E+00 2,9E-02
25 Pattern score 6 Complexity lin 0,88 4,30 7,0E-03 29,4 5,1E-04 3,1E-02 0,0E+00 1,4E-02
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Figure 2  -  PRINCIPAL COMPONENTS OF EEG FEATURES AND CONTEXT FACTORS

A Circle of correlation showing the proportion of variance of 
contributed by each EEG feature in the second principal 
component versus the first principal component. The first 
and second components contribute 55% and 31% of the 
variance respectively.

C Circle of correlation of the Context Factors in the 
second principal component versus the first principal 
component. The first and second components contribute 
48% and 14% of the variance respectively.

B Circle of correlation of the EEG features in the 
third principal component versus the first principal 
component. The third component contributed to 14% 
of the variance.

D Circle of correlation of the Context Factors in the third 
principal component versus the first principal component. 
The third component contributed to 9% of the variance.

Table 2  -  STATISTICS FOR MOST SIGNIFICANT RELATIONSHIPS
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Fig. 3A shows the R2 of the best fit for each context factor versus 
each EEG feature. Along the x-axis the matrix is sorted by the 
correlation of the EEG features/principal components to each 
other thereby bringing CT and EEG Comp1 next to one another.  
Along the y-axis the EEG features are sorted based on the average 
R2 of CT and EEG Comp1, which tended to be similar as CT 
dominated EEG Comp1.  The strongest and most significant 
relationships, with R2 >0.9, were between each of CT and EEG 
Comp1 and the composite component scores of the factors 
(Context Comp1, which was roughly evenly made up of all factors 
and Context Comp2, which was dominated by Geofootprint).  
The next strongest were between each of CT and EEG Comp1 and 
Geofootprint and then Income, which had R2 values above 0.8.  
We note here that given that geofootprint represents an ordered 
categorization of an underlying variable, but not a systematic or 
ordinal scale, a fit should strictly not be performed.  However we 
have included it for the purpose of approximate comparison.

With regard to the features of the alpha oscillation, the largest 
R2 was between Eα and fuel consumption or fuel spend (0.95, 
exponential fit). In contrast the fits for Pα relative to the context 
factors were not as strong, although wtPα (Pα weighted by Eα) had 
strong relationships with income as well as the composite Context 
Components scores, particularly Context Comp2. 

Fig. 3B shows the PANOVA for the grouping of EEG features into 
each bin of the context factor of comparison (as defined in 3A 
above).  Here again, the matrix is sorted along the x-axis in the 

same way as in 3A.  The y-axis is sorted by the average PANOVA of 
the first two columns (CT and EEG Comp1) going from the lowest 
average PANOVA (most significant) to the highest (least significant).  
Note that the ordering is therefore not the same as in 3A and that 
grey indicates a value of 0.05 or greater.  The most significant 
relationships also had the best R2 values for trend fits. Prominently, 
the relationship between EEG Principal Components and Context 
Principal Components had PANOVA values of 10-9 or lower 
indicating a profoundly strong relationship between dynamical 
features of the brain and life context.

In order to see both components of the relationship R2 and PANOVA 
together we plotted these against each other (Fig.4).  Figs. 4A, 
B shows the R2 versus PANOVA for each of CT and EEG Comp1 
(4A) and the Alpha Oscillation features (4B) to Context Comp1, 
Context Comp2, Daily Family Income and Daily Individual 
Income. Both income and the component scores are more macro 
factors. While the component scores are a weighted score of all the 
factors, income is an enabler of all the factors.  

Figs. 4C,D show the similar relationships for Geofootprint, 
Population and Education which are demographic and 
environmental factors of exposure.  In this group Geofootprint had 
the greatest R2 and significance with respect to most EEG features, 
more so than education.  The most significant relationship was 
with complexity and the first component score as shown by their 
position in the bottom right corner with R2 >0.85 and pANOVA 
<10-7.

Figure 3  -  SUMMARY OF RELATIONSHIPS BETWEEN EEG FEATURES AND CONTEXT FACTORS 

A R2 values for the function that best fit the relationship 
between each individual EEG Feature or composite 
Component (columns) and each individual Context 
Factor or composite Component (rows).  Given the 
similarity of CT and EEG Comp 1 these are placed next 
to one another and values sorted in descending order by 
the average R2 of CT, and EEG Comp1.  All relationships 
had R2 > 0. Gray represents values between 0 and 0.2.

B P-value of ANOVA (PANOVA) values for the 
groupings of individual EEG Feature or composite 
Component (columns) along each individual 
Context Factor or composite Component (rows) 
used to identify the function of best fit.    
Values are sorted in ascending order by the 
average of CT and EEG Comp1.  
Gray represents values >0.05.
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Fig. 4E,F shows the relationship of EEG features with expenditure 
on technology; mobile phone, fuel and electricity. Relative to 
the other categories, technology factors had far less significant 
relationships to these EEG features and only mobile and fuel spend 
fell below the significance level of 0.05 (dotted line).  Interestingly, 
Eα had a more systematic and significant relationships to mobile 

phone and fuel spend (Fig. 5B,C) than the CT and EEG Comps 1 
and 2. The relationship between fuel spend and Eα was the most 
significant stand out.  The R2 was very high though the PANOVA was 
only moderately significant (P=0.003). This was on account of a 
systematic skewing of the distributions rather than the progressive 
shift that was characteristic of geofootprint and education.

Figure 4  -  R2 vs. PANOVA FOR EEG FEATURES AND CONTEXT FACTOR

A PANOVA vs. R2 values of the 
relationships between CT and EEG 
Comp1 with income (family and 
individual) as well as each of first 
two principal components of the 
Context Factors (Context Comps 1,2)

C PANOVA vs. R2 values of the 
relationships between CT and EEG 
Comp1 with geofootprint (past 
year, life and of family and friends), 
population of hometown and 
education.

E PANOVA (y-axis) vs. R2 values 
(x-axis)  of the relationships 
between complexity and related 
components (CT and EEG Comp1) 
with monthly spend on Mobile 
phone, fuel and electricity.

B PANOVA vs. R2 values of the 
relationships between Pα, Eα, wtPα, 
EEG Comp2 with income (family and 
individual) as well as each of the 
first two principal components of the 
Context Factors (Context Comps 1,2).

D PANOVA vs. R2 values of the 
relationships between Pα, Eα, wtPα, 
EEG Comp2 with geofootprint (past 
year, life and of family and friends), 
population of hometown and 
education.

F PANOVA vs. R2 values of the 
relationships between alpha 
oscillation features and 
components (Pα, Eα, wtPα, EEG 
Comp2) with monthly spend on 
mobile phone, fuel and electricity.
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In Fig.5 we show the most noteworthy relationships between the 
EEG alpha oscillation features and individual factors:  between 
Eα and fuel consumption (5A), and wtPα and education (5B) and 
income (5C). Note that the relationships of Complexity with these 
factors has been shown in [18] and has therefore not been repeated 
here. The complete set of relationships between all EEG features and 
Context factors are shown in Supplementary Figures:  Daily Family 
Income (Sup. Fig. 1), Education (Sup. Fig. 2), Geofootprint/Travel 
(Sup. Fig. 3), Mobile Phone Usage (Sup. Fig. 4), Fuel Consumption 
(Sup. Fig. 5) and Electricity Spend (Sup. Fig 6).

Finally, we show the relationships between the first two EEG 
Components and the first two Context Components (Fig. 6).  As 
described earlier, the EEG components represent composite views 
of the overall dynamical characteristics along the components 

Figure 5  -  KEY RELATIONSHIPS OF ALPHA OSCILLATION FEATURES TO CONTEXT FACTORS

Figure 6  -  SCALING OF COMPOSITE EEG FEATURES WITH COMPOSITE CONTEXT FACTORS

A Mean Eα ±SEM for participants in 
each bin of spending on fuel (note 
logarithmic bins).

C Mean wtPα ±SEM  
for participants vs. income.

B Mean wtPα ±SEM  
for participants vs. years of ducation.

of maximal variability among the population. The first EEG 
component (EEG Comp1) scaled sigmoidally in relation to the first 
Context Component (Fig. 6A; PANOVA= 1.96 x 10-9 R2=0.94) and 
linearly with the second Context Component (Fig. 6B; PANOVA= 
8.54 x 10-10 R2=0.95).  The second EEG Component (dominated 
by Pα) was not as tightly related but nonetheless scaled linearly 
with both Context Components 1 and 2 (Fig. 6C,D; PANOVA= 1.75 
x 10-3 R2= 0.89 for Context Comp1 and PANOVA= 4.54 x 10-3 R2 = 
0.59 for Context Comp2). However, we do point out that this does 
not imply a linear relationship with the components of modern life.  
Given the long tail structure of the various data elements such as 
income and mobile phones, the principal components are derived 
from logarithmic transforms of many of the data elements.  Thus 
the effective relationships are nonlinear in nature.

A Mean of EEG Comp1 
±SEM for participants 
for each bin of Context 
Comp1.  
Dotted line: sigmoidal fit.

B Mean of EEG Comp1 
±SEM for participants 
for each bin of Context 
Comp1.  
Dotted line: linear fit.

C Mean of EEG Comp2 
±SEM for participants 
for each bin of Context 
Comp1.  
Dotted line: linear fit.

D Mean of EEG Comp2 
±SEM for participants 
for each bin of Context 
Comp2.  
Dotted line: linear fit.
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DISCUSSION
We have described here the relationship between three fundamental 
aspects of the resting EEG signal, the complexity of the waveform 
and the peak frequency and energy of the alpha oscillation, and the 
contextual factors of income, geofootprint, population, education 
and spending on mobile phone usage, fuel and electricity.  Overall 
we show that the magnitude of these EEG features increases as 
a function of these life context factors indicating that the more 
access one has to the various aspects of modern living, the more 
enhanced these features were in the brain.  

A host of studies have shown that lower income and education 
are associated with structural differences in the brain [5-11] and 
that environmental enrichment is associated with a vast array 
of cellular and molecular changes in animals [12-15].  However 
this study is the first to combine observations of EEG with such 
a large number of contextual factors and such a broad cross-
section of human populations.  Our results provide not just a 
deeper understanding of the various factors of influence and 
their interrelationships, but also a clear picture of the magnitude 
of difference and the manner in which the change occurs.  Many 
of the relationships were highly systematic and of unquestionable 
magnitude and significance.  Overall, complexity and the first 
principal component EEG Comp1, which was dominated by 
complexity, had the most dramatic relationship to the various 
contextual factors of modernization.  We discuss below some of 
the key findings and their implications.

Geofootprint as a key influencer
Every EEG feature except Pα had a dramatic and highly significant 
relationship to geofootprint or the spatial extent of one’s travel, 
with the relationship with Complexity being the most systematic.  
Further, geofootprint reflecting travel in the past year appeared 
to have higher significance than the geofootprint of ones lifetime.  
This ran counter to our expectation that education would have 
the most dominant correlation to ones brain complexity. In this 
context it is interesting to note that while education and mobile 
phone use were very tightly coupled to income, geofootprint 
varied more independently of income and other factors. This 
makes sense when one considers that unlike education, which is 
an institutionalized experience, geofootprint or the exploration of 
the physical world generally comes about by personal choice.  Such 
exploration is also a complex interactive experience compared to 
the more didactic, text book based learning that is characteristic 
of the Indian education system.  Traveling requires planning 
and navigating new spatial environments, people, languages and 
cultures and a forced learning of new things.  Indeed, migratory 
populations that have traveled long distances in search of new 
resources have played a fundamental role in shaping human 
history.  It will be of considerable interest to explore more deeply 
the nature and direction of influence of travel and migration.  

The impact of education
In our study, years of education like geofootprint, was also 
significantly related to all EEG factors except Pα, although 
with slightly less significant statistics.  Overall, we see that the 
enhancement of EEG features is most prominent for the first 
five years of education while the effects of the years of secondary 

education are not very significant.  However, those who make the 
transition to college are considerably higher in their EEG metrics 
perhaps because they are a select group that has performed at a 
higher level in their secondary education.  This group also has 
significantly higher income overall, as they could not otherwise 
afford to go to college. This also means that their secondary 
education is likely to have been of higher quality.   Finally, many of 
our participants were from small villages and towns in India where 
the method of education was purely textbook based without the 
interactive technology and tools of today.  It would therefore be 
of interest to explore different methods of education to determine 
how much our results are a consequence of a poor quality of 
education or a particular system rather than a general statement 
about classroom instruction.

The logarithmic effect of income 
Both complexity and the weighted Pα had very strong relationships 
with income, which is one of the most significant enablers of access 
to experiences and technologies. In both cases the relationship 
with income was clearly logarithmic.  The steepest part of the 
curve was between $1 and $30/day in family income indicating 
that there were substantial gains as income increased up to $30/
day.  However as one went beyond $50/day the differences in 
the populations were no longer substantially different.  $30/day 
corresponds to an annual income of $10,950, which in India 
provides access to all features of modern living.  In PPP terms 
$30/day in India is roughly $90/day in the United States and is 
considered high income by global standards.  At this income 
level, one can comfortably own a car, smart phone and modern 
household amenities as well as have 24 hour internet access.  
Importantly, in 2011 PPP terms, globally only 7% of humanity 
live on >$50 a day (considered high income) and 16% on $20-$50/
day (considered upper-middle income) respectively; in India only 
about 0.5% have incomes between $20 and $50 per day[20]. By 
contrast in the United States 89% have incomes >$20/day.

It is also of interest to note that a study in the United States showed 
a similar logarithmic relationship to the surface area of the 
cortex[9].  Indeed the various structural differences in the brain 
that are associated with brain structure such as increased cortical 
thickness and surface area [5-11] would be expected to translate to 
changes in its aggregate dynamical function as measured by EEG.  

Fuel consumption and the alpha oscillation
Compared to complexity, the features of the alpha oscillation 
were not as systematically related to any of the features of 
modernization that we looked at.  However, it is clear that the 
alpha oscillations are much more prominent in the higher income 
groups and were virtually undetectable in the majority of the pre-
modern group.  Of all the relationships, the most intriguing was 
between the energy of the alpha oscillation and fuel consumption. 
Unlike geofootprint, which captures a more complex experience of 
navigating new places, fuel consumption reflects largely daily local 
car travel.  Consequently it is also a proxy for the speed at which 
a person experiences visual stimuli.  It has been suggested that 
the alpha oscillation plays a role in enabling attention on salient 
aspects while suppressing others [21, 22].  This would therefore 
be a useful feature that was substantially enhanced as we began 
experiencing the world at faster speeds.  
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Implications
These metrics of the EEG that we have shown clearly scale with 
various elements of life context. What does this mean in the context 
of cognitive function?  The alpha oscillation has been widely 
studied and demonstrated to have positive correlation to a number 
of cognitive capacities[23, 24] such as working memory[25-27], 
attention[28-30] and learning ability[31]. Conversely it declines 
with increasing age[27] and is found at lower levels in fragile X 
mental retardation syndrome[32] and in patients with Alzheimer’s 
and amnesic mild cognitive impairment[33].  Complexity, as we 
have defined it, has not been extensively tested in its relevance to 
cognitive function. However, our limited study has shown a very 
significant correlation to performance on a pattern completion test 
[18].  Various entropy measures, however, which are closely related 
to this measure of complexity correlate with levels of consciousness 
measured during the application of anesthesia [34, 35] as well as by 
comparing people who are in different states of consciousness (e.g. 
minimally conscious and coma)[36].   In the context of our findings 
this suggests that modern advances have dramatically enhanced 

cognitive function. More poignantly our findings indicate that as 
a species, we are diverging dramatically in our cognitive function.  
Unlike the heart, which beats and performs in the same way for all 
of us, our brain does not.  Indeed, the metrics of brain dynamics 
can only be described in context and there is no absolute ‘normal’ 
like there is for other organs such as the heart.  With the tools of 
modern advance and the its correlates of cognitive function still a 
relative privilege for much of humanity, what does this mean for 
our future as a collective species?
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A Pα vs. Daily family Income (Mean±SEM 
of Pα for populations within each Daily 
Family Income bin with best fit shown  
as dotted line (fit: logarithmic).  
Open circles show average of random 
shuffling of Pα values across the sample.   
The same format is maintained for all 
supplementary figure panels.

D CT vs.  
Daily Family Income  
(fit: logarithmic).

C wtPα vs.  
Daily Family Income  
(fit: logarithmic).

F EEG Comp2 vs.  
Daily Family Income bin  
(fit: logarithmic).

B Eα vs.  
Daily Family Income  
(fit: linear).

E EEG Comp1 vs.  
Daily Family Income bin  
(fit: logarithmic).

Sup. Figure 1  -  RELATIONSHIPS OF EEG FEATURES TO FAMILY INCOME

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/125906doi: bioRxiv preprint 

https://doi.org/10.1101/125906
http://creativecommons.org/licenses/by-nc/4.0/


12

A Pα vs. Education  
(fit: exponential).

D CT vs. Education  
(fit: linear).

C wtPα vs. Education  
(fit: linear).

F EEG Comp2 vs. Education  
(fit: linear).

B Eα vs. Education  
(fit: linear).

E EEG Comp1 vs. Education  
(fit: linear).

Sup. Figure 2  -  RELATIONSHIPS OF EEG FEATURES TO EDUCATION
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A Pα vs. Geofootprint  
(fit: linear).

D CT vs. Geofootprint  
(fit: linear).

C wtPα vs. Geofootprint  
(fit: linear).

F EEG Comp2 vs. Geofootprint  
(fit: linear).

B Eα vs. Geofootprint  
(fit: linear).

E EEG Comp1 vs. Geofootprint  
(fit: linear).

Sup. Figure 3  -  RELATIONSHIPS OF EEG FEATURES TO GEOFOOTPRINT (PAST YEAR)
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A Pα  vs. Mobile Phone Spend   
(fit: linear).

D CT  vs. Mobile Phone Spend   
(fit: linear).

C wtPα  vs. Mobile Phone Spend   
(fit: linear).

F EEG Comp2  vs. Mobile Phone Spend   
(fit: linear).

B Eα  vs. Mobile Phone Spend   
(fit: linear).

E EEG Comp1 vs. Mobile Phone Spend   
(fit: linear).

Sup. Figure 4  -  RELATIONSHIPS OF EEG FEATURES TO MOBILE PHONE SPEND
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A Pα vs. Fuel Spend (fit: linear; note 
logarithmic scale used for fuel 
consumption).

D CT  vs. Fuel Spend   
(fit: linear).

C wtPα vs. Fuel Spend  
(fit: linear).

F EEG Comp2  vs. Fuel Spend  
(fit: linear).

B Eα vs. Fuel Spend (effective fit: linear 
– note that the fit here is exponential 
as the fuel scale is logarithmic). 

E EEG Comp1 vs. Fuel Spend    
(fit: linear).

Sup. Figure 5  -  RELATIONSHIPS OF EEG FEATURES TO FUEL SPEND
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A Pα  vs. Electricity Spend   
(fit: linear).

D CT  vs. Electricity Spend    
(fit: linear).

C wtPα  vs. Electricity Spend    
(fit: linear).

F EEG Comp2  vs. Electricity Spend  
(fit: linear).

B Eα  vs. Electricity Spend    
(fit: linear).

E EEG Comp1 vs. Electricity Spend    
(fit: linear).

Sup. Figure 6  -  RELATIONSHIPS OF EEG FEATURES TO ELECTRICITY SPEND
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A Pα  vs. Context Comp1    
(fit: linear).

D CT  vs. Context Comp1     
(fit: linear).

C wtPα  vs. Context Comp1     
(fit: linear).

F EEG Comp2  vs. Context Comp1  
(fit: linear).

B Eα  vs. Context Comp1     
(fit: linear).

E EEG Comp1 vs. Context Comp1     
(fit: linear).

Sup. Figure 7  -  RELATIONSHIPS OF EEG FEATURES TO CONTEXT COMP1
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A Pα  vs. Context Comp2    
(fit: linear).

D CT  vs. Context Comp2     
(fit: linear).

C wtPα  vs. Context Comp2     
(fit: linear).

F EEG Comp2  vs. Context Comp2  
(fit: linear).

B Eα  vs. Context Comp2     
(fit: linear).

E EEG Comp1 vs. Context Comp2     
(fit: linear).

Sup. Figure 8  -  RELATIONSHIPS OF EEG FEATURES TO CONTEXT COMP2
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Sup. Table 1
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