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The impact of socioeconomic 
and stimulus inequality on human 
brain physiology
Dhanya Parameshwaran1, S. Sathishkumar1 & Tara C. Thiagarajan1*

The brain undergoes profound structural and dynamical alteration in response to its stimulus 
environment. In animal studies, enriched stimulus environments result in numerous structural and 
dynamical changes along with cognitive enhancements. In human society factors such as education, 
travel, cell phones and motorized transport dramatically expand the rate and complexity of stimulus 
experience but diverge in access based on income. Correspondingly, poverty is associated with 
significant structural and dynamical differences in the brain, but it is unknown how this relates to 
disparity in stimulus access. Here we studied consumption of major stimulus factors along with 
measurement of brain signals using EEG in 402 people in India across an income range of $0.82 to 
$410/day. We show that the complexity of the EEG signal scaled logarithmically with overall stimulus 
consumption and income and linearly with education and travel. In contrast phone use jumped up at a 
threshold of $30/day corresponding to a similar jump in key spectral parameters that reflect the signal 
energy. Our results suggest that key aspects of brain physiology increase in lockstep with stimulus 
consumption and that we have not fully appreciated the profound way that stimulus expanding 
aspects of modern life are changing our brain physiology.

Universal education based on literacy and numeracy, and technologies such as electricity, telecommunications 
and motorized transport are relatively recent advances in human society that expand the rate and scope of 
stimulus experience. Education expands the scope of knowledge encountered, and transport increases the rate 
of visual stimulus, the extent of spatial environment encountered in a day and travel to novel spatial environ-
ments, languages and cultures, while phone use expands social interaction and access to information of various 
kinds. However large populations still lack formal education and literacy, walk long distances to access public 
transport, and still do not have smart phones. What is the impact of this profound divergence in socioeconomic 
and stimulus environment on human brain physiology?

This is a fundamentally important question because unlike any other organ, the brain is experience dependent 
in its development and function; in addition to consuming nutrients, it must ‘consume’ stimulus to inform its 
 growth1–3. Placing rodents in a more complex environment has far reaching impact on gene expression in the 
 brain4, the degree and nature of synaptic  plasticity5–8, branching of neuronal  dendrites9,10, brain surface area and 
a host of other functional and structural  aspects11,12 and reduces the negative impact of various  disorders13. Cor-
respondingly, studies demonstrate that childhood poverty in the United States, which impacts access to stimulus, 
has a dramatic negative effect on dynamical and structural elements of the brain such as cortical  volume14 and 
surface  area15, as well as gamma power in the  EEG16. Conversely years of education correlates positively with 
these structural aspects of the  cortex17,18.

In this study we probe the relationship between key aspects of human brain physiology and major stimulus-
expanding factors, contrasting it to the relationship to consumption of major food groups (diet factors). To meas-
ure brain activity, we used electroencephalography or EEG which records electrical activity using noninvasive 
electrodes placed on the scalp. We then quantified the complexity and energy of the signal, both key measures of 
brain activity with significant implications for cognitive function and health. Complexity represents the diversity 
of patterns produced in the signal and has been associated with performance on a pattern recognition  task19 and 
may correlate with states of consciousness and  alertness20–22. Energy was assessed with multiple metrics derived 
from the power spectrum. The alpha oscillation, a key spectral or energy measure, positively correlates with 
various cognitive processes such as working memory and  attention23 where it is hypothesized to play a role in 
suppression of distracters to enable selective attention and mental  imagery24–26.
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This study, carried out in Tamil Nadu India, compared key features of resting EEG activity in adults with a 
wide range of household income and stimulus consumption patterns with respect to education, travel, mobile 
phone usage, electricity and fuel consumption.

Broadly, our results show a systematic increase in both energy and complexity of the signal with income, that 
occurred in lockstep with increasing stimulus consumption, resulting in a several fold difference between the 
lowest and highest stimulus consumption groups. Our data suggest that whereas phone usage may be the major 
driver of differences in signal energy, travel and education enhance complexity of the signal. These findings have 
enormous implications for how we must understand and approach brain health in a global context.

Materials and methods
Sampling. 402 participants between the ages of 21 and 65 were recruited in Tamil Nadu, India from loca-
tions that spanned a range of literacy levels and infrastructural features such as distance to road and electrifica-
tion. This included remote settlements with little to no access to electricity, phones or motorized transport to a 
city of several million people with all modern resources and amenities. 16% of participants came from villages 
with populations less than 2000 with no secondary education facilities, public transport or telecommunication, 
50% came from villages and towns ranging from 5000 to 10,000 people with a diversity of infrastructure, 12% 
were from towns with populations of ~ 100,000 and 22% came from million person cities with international 
airports. In each location participants were selected to span as evenly as possible each age decade from 20 to 
60 s, and within each age band were split roughly equally by gender. Participants were also recruited across a 
breadth of household income in each ecosystem. Annual incomes from $300 to approximately $150,000 dol-
lars (~ $0.85 to $410/day). In the smaller villages this spanned $0.85 to ~ $5 per day while in the cities it ranged 
from $2.50 to ~ $410/day and within each income band ($0–$10/day, $10–$30/day and > $30/day) were spread 
roughly equally by age and gender. Education levels spanned from no schooling to college or beyond.

Participant recruitment. Interested participants in each location were fully informed about the intent 
of the experiment, provided with demonstrations of the recording and experimental process and asked to sign 
a consent form. All recruitment, consent and data collection were carried out in accordance with protocols 
approved by Health Media IRB (USA, OHRP IRB #00001211) and Sigma-IRB (India) in accordance with Title 
45, code of federal regulations, sub-part A of NIH (USA) and Indian Independent Ethics Committee require-
ments. Participants were then surveyed to determine if they were appropriate for inclusion based on our sam-
pling criteria of age, gender and income and had no known history of physical or mental illness. If so, a time 
was scheduled for the data collection which included surveys of their demographics, diet, technology use and 
travel behavior along with EEG recordings. Participants were instructed to wash and dry their hair on the day of 
the EEG recording without the application of hair products, particularly hair oil. Low-income participants were 
provided with a sachet of shampoo. Participants were excluded from participation if they reported any illness 
(headache, nausea, cough, cold) on the day of the recording. Recordings were carried out indoors, typically in 
the home of the participant or sometimes in public locations such as offices, village halls or schools. Care was 
taken to select locations at distance from noise producing equipment such as mobile towers, electric motors and 
pumps. Low-income participants were paid Rs. 150 ($2.50) to compensate for potential loss of wages.

Survey of demographics, stimulus and diet. Survey data was collected on a tablet using forms with 
check boxes, radio buttons and drop downs to minimize data ambiguities. Details of data captured is provided in 
Table 1 (full questionnaire in Supplementary Materials; Distributions in Supplementary Fig. 1; Supplementary 
Table 1). In the case of travel and diet, answers were coded into ordinal groups for simplicity (into four travel 
distance categories and three groups of frequency of consumption for diet). In aggregate, out of the total sample, 
the diet questions were administered to 370. In a few cases participants did not know an answer to a question or 
occasionally declined to answer.

EEG recordings. Resting state EEG activity was captured for 3–4 min when the subject was sitting still with 
their eyes closed using the 14 channel Emotiv EPOC EEG headset (14 gold plated electrodes and 2 reference 
electrodes (M1, a ground reference point for measuring the voltage of the other sensors and M2, a feed-forward 
reference point for reducing electrical interference from external sources). The Emotiv EPOC is an inexpensive, 
portable and easy to use device, making it very advantageous for large-scale studies across multiple locations. In 
addition, it has a 12-h battery life which is convenient for recording in remote locations where electricity may 
be absent or intermittent. The raw signal had an internal sampling rate of 2048 Hz that was digitized at 128 Hz. 
It was then filtered with a digital 5th order Sinc filter and notch filters at 50 and 60 Hz with a resulting effective 
bandwidth of 0.2 and 45 Hz. Channels where Emotiv’s internal channel quality metric (based on channel imped-
ance estimates) was less than 5 for 90% of the recording were discarded.

Computation of EEG metrics. We then computed complexity and various aspects of energy of the EEG 
signal including total alpha power, alpha energy, peak alpha frequency and theta-beta ratio (Distributions in 
Supplementary Fig. 2; Supplementary Table 2).

Waveform Complexity: This complexity metric is a unitless measure of the diversity of waveform shapes in 
the signal on long timescales and is described in detail  in19. Briefly it compares the complex shapes of waveforms 
on a timescale of 500 ms, which is on the order of the time scales of perception to provide a metric of waveform 
diversity where 100 indicates a maximal diversity of waveform shapes. This complexity metric is correlated with 
other entropy and complexity metrics such as Spectral Entropy, Sample entropy and Lempel–Ziv complexity 
which also attempt to quantify diversity and information content of the signal. However it contrasts to entropy 
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measures such as Permutation Entropy and Sample Entropy, which typically utilize very short time scales or 
embedding dimensions on the order of a few milliseconds, and/or do not consider the relative amplitude values 
of the waveforms. It also provides greater discrimination across individuals and has also performed better in 
predicting results on a pattern recognition  task19. We note that permutation and sample entropy while direction-
ally similar do not provide significant results in this data (not shown).

Energy metrics. Here we use the term energy to refer to greater high frequency components in the signal. 
This is an approximation for the purpose of easy intuition and not accurate in the strict sense since these metrics 
are based on the power spectral density (PSD) which refers to the spectral energy distribution per unit time. 
‘Energy metrics’ and ‘spectral metrics’ are therefore used interchangeably. The PSD, which involves a transfor-
mation of the EEG signal to the spectral domain, was computed for each channel in R using the Welch function 
with a hamming window and 50% overlap. The power was then summed across different frequency bands (Theta 
(4–7.5 Hz), Alpha (7.5–14 Hz) and Beta (14–30 Hz)) to obtain the total power in each of these bands (Fig. 1A). 
The alpha band often exhibits a peak above the background decay (marked by box in panel A above) reflecting 
the presence of an embedded rhythmic oscillation in the signal. Multiple metrics of the PSD were then computed 
as follows, primarily focusing on the alpha band (histograms of all metrics Supplementary Fig. 2; spatial distri-
bution Supplementary Figs. 3, 4).

Alpha is the relative power in the alpha band calculated by summing the total power across this range of fre-
quency and dividing by the total power across the full range from 0–50 Hz for each channel, and then averaging 
across channels. It is therefore shown as a fraction and is unitless.

Table 1.  Description of survey elements.

Survey elements Description

1 Population Population of settlement where individual is residing as per government census of associated revenue village. If location is greater 
than 2 km from revenue village, hamlet population obtained from panchayat (local government) is used

2 Household income
Acquired as total monthly household income in Indian Rupees and converted to USD at the exchange rate at the time of data 
acquisition of Rs 60 per USD and then represented in income per day. A monthly income of 54,000 Rupees per month translates to 
$30 per day

Stimulus factors

3 Education level
Number of years of completed education counting from grade 1. Of those who attended college, all in the sample completed it. Note 
all college graduates are marked as 16 years of education, although some attended 3-year colleges. No. of years of education beyond 
16 was not noted. However 12 members of the sample had > 16 years of education

4 Farthest travel (past year)

Farthest distance traveled from home in the one year before the date of survey. Specific locations were noted by asking respondents 
to list the furthest places they had been and then coded by the following categories: The highest coded location was used
1: Within home town
2: Within 100 km from hometown in the same State (typically a day trip)
3: > 100 km from hometown in the Same State (typically requires overnight stay)
4: Within 100 km from hometown to a different State (note that State boundaries in India are based on language so different State 
indicates a different language)
5: > 100 km from hometown to a different State
6: To a different country

5 Farthest travel (lifetime) Farthest location from their current home that they have ever been in their life for any reason at any age. Locations were coded for 
analysis by the same categories as above

7 Fuel consumption
This refers to the amount they spent on purchasing petrol or gasoline in the previous full month shown in Indian Rupees. The price 
of petrol was ~ Rs. 75/liter or $4.75/ gallon at the time of survey. The range of fuel purchase ranged from 0 (no vehicle) or going 
from 1 L all the way to 160 L or 42 gallons, translating to miles traveled in the month of anywhere from 20 to 1500 for one person in 
the transportation business

8 Electricity usage
This refers to the amount they spent on household electricity in the previous full month shown in Indian Rupees. The price of 
electricity at the time of survey ranged from Rs. 1 to Rs. 4 per unit or kWH. The tariff was a sliding scale with lower prices for those 
consuming lower levels of electricity. Consequently an exact conversion to units consumed was not readily possible

9 Phone usage
This refers to the amount spent on phone communication or other usage in the previous full month shown in Indian Rupees 
converted to USD at 60 Rs. per USD. Note that due to various pricing schemes of prepaid SIM cards as well as data plans it was not 
possible to convert these numbers to any particular talk time or data usage

Diet factors

11 Grains frequency
Average frequency of consumption of major grain-based foods in the region (rice, wheat and millet based). Respondents were asked 
how frequently they consumed each food per week and answers were categorized as follows: once or less in the past month, 1–3 
times per week, more than 4 times per week. Categories were given weightings of 0.1, 2 and 5 respectively. Frequency refers to the 
average of the selected category weightings across all foods in the food group

12 Grains variety Total consumption of all major grain-based foods in the region computed by summing the category weightings selected across all 
foods in the food group

13 Protein frequency Average frequency of consumption of major protein-based foods in the region (meat, chicken, eggs, milk, yoghurt) computed as in 
11

14 Protein variety Total consumption of major protein-based foods in the region (meat, chicken, eggs, milk, yoghurt) computed as in 11

15 Vegetable frequency Average frequency of consumption of 21 major types of vegetables in the region computed as in 11

16 Vegetable variety Total consumption of 21 major types of vegetables in the region computed as in 11

17 Fruit frequency Average frequency of consumption of 15 major types of fruits available in the region computed as in 11

18 Fruit variety Total consumption of 15 major types of fruits available in the region computed as in 11
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Peak Alpha (Pa) refers to the frequency in Hertz corresponding to the peak seen the alpha band shown by 
arrow in Fig. 1A and Alpha Energy (Ea, units µV/Hz) is a characterization of the peak, arising above the back-
ground decay using the algorithm described  in27.

CV_Alpha refers to the co-efficient of variance or  (SDalpha/meanalpha)*100, where  SDalpha and  meanalpha are 
the standard deviation and mean of the relative alpha power across all channels respectively. This metric is also 
unitless, as relative alpha power is unitless, and provides a view of the spatial variability of the alpha power 
across the brain.

Theta-beta ratio was computed as the ratio of the power of the signal within the theta band (4–7.5 Hz) and the 
beta band (14–30 Hz) calculated for each channel and then averaged across channels. It is unitless and a higher 
theta-beta ratio, implies a greater relative proportion of lower frequencies or lower energy in the signal overall.

All energy (i.e. spectral) metrics except for Pa are significantly correlated with one another (Fig. 1B; r > 0.8, 
p < 2.1E−96 for alpha metrics and r <  − 0.79 vs theta-beta, p < 1.3E−85; Supplementary Table 3). Complexity is 
also correlated with spectral metrics but less so (r < 0.47, p = 7.6E−18) reflecting the greater potential diversity of 
waveforms that can be created with higher frequencies, but providing a relatively distinct view.

Principal component analysis. The Principal Component Analysis (PCA) was done in R using the Fac-
tomineR PCA. The component scores for the EEG, stimulus factors and diet factors of each individual were cal-
culated by multiplying the contributions of each element by the unscaled individual element and then summing 
across the score of all components (Figs. 2B and 3B, C; Circle of correlations Supplementary Fig. 3, Eigenvalues 
Supplementary Table 6). For those factors with skewness > 3 (Supplementary Tables 1, 2), the values were log 
transformed using either a base 2 or base 5 to maximize the number of contiguous nonempty log bins. PCA was 
also done without Travel which is an arbitrary ordinal grouping and therefore may distort the results. However 
no significant difference was found (Supplementary Fig. 6; Table 2). Trends were computed on the bin means 
(Table 2) and also on the un-binned data as described in 2.8 (Supplementary Table 8).

Comparison of low‑stimulus and high‑stimulus groups. We compared EEG metrics between 
groups that represented the two extremes of stimulus consumption in the sample (Fig.  4 and Table  3). The 
‘low-stimulus’ group had fuel spend < $15/mo, phone < $3/mo, a primary education or less and corresponded 
to income of < $10/day (N = 59, average age 44 ± 8 years, 55% Male). The ‘high-stimulus’ group (N = 29; average 
age 37 ± 10 years, 85% Male) had fuel spend > $30/mo phone spend > $25/mo and a college education or beyond, 
corresponding with income of > $50/day. Statistics used to compare these two groups included the one-sided 
t-test for samples of unequal variance and the non-parametric Kolmogorov–Smironov (K–S) test. A metric was 
considered statistically significant between the two groups when both of these p-values were < 0.01 (assuming a 
Bonferroni correction factor of 5 equal to the number of metrics compared). Note that there was no difference 
in any EEG metric between stimulus matched age or gender groups (Supplementary Table 11).

Correlations and trend statistics. Pearson’s correlations and associated p-values were computed between 
each of the metrics (Fig. 1B; Supplementary Table 3) and survey factors (Fig. 2A; Supplementary Table S4) and 
between Factors and EEG Metrics (Fig. 4A; Supplementary Table S5). Significance levels were adjusted using a 
Bonferroni correction based on the number of comparisons.

Figure 1.  EEG spectral or energy metrics. (A) Example of raw signal transformed to a power spectrum 
showing Alpha band (area under the spectrum labeled alpha), Ealpha (peak highlighted by box), Peak Alpha 
or Pa (frequency on x-axis corresponding to peak shown by arrow) and Theta-Beta Ratio (ratio of area marked 
theta divided by area marked beta). (B) Correlation of EEG metrics shows spectral or energy metrics other than 
Pa are highly correlated providing multiple views of a similar aspect of the signal.
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The trend of the relationship between each EEG metric and each survey factor was then determined using 
multiple statistics. First, we computed the ANOVA F-stats and p-values based on bins along the dimension of 
survey factors, where significance was determined after correcting for multiple comparisons (Supplementary 
Table S7). We then used multiple statistics to determine if there was a trend in the data (Supplementary Table S8). 
For each pair of EEG metric and survey factor we used the Mann–Kendall test to determine the significance of 
a linear trend. We also utilized the ordinary least squares (OLS) regression to compute the  R2 and p-value of the 
each of linear, logarithmic and exponential trends. We similarly estimated the F-stat,  R2 and p-values using the 
Theil–Sen robust regression estimator which is free of the assumption of a normal distribution and is not sensitive 
to outliers. The most significant trends by multiple estimations are shown in Table 4 and selectively in Figs. 5, 6 
and 7. For each such trend shown in the Figures, the bin sizes were determined such that the first and last bins, 
where the number of participants was typically fewer, had at least 5 data points, (N values Supplementary Table 9).

Density plots. Density plots in Fig. 4 were created using a kernel density estimation with a gaussian kernel 
and smoothing parameter equivalent to the standard deviation of the kernel to provide a smooth view of the 
distributions of the two groups. All statistics were computed on the actual data.

Results
Here we have examined how the complexity and energy of the EEG signal relates to household income and con-
sumption of stimulus factors such as education, travel, phone and fuel spend as well as consumption of major 
food groups (Table 1).

Input factors and their relationships. Figure 2 shows a clustered correlation matrix (r) of all of the diet, 
stimulus and demographic factors (r- and p-values shown in Supplementary Table 4). Stimulus factors (box 
marked S) were all correlated to one another as were diet factors (D) (r > 0.2, p < E−05 both cases; Bonferroni 
corrected significance threshold = 3.68E−04). In contrast 82% of comparisons between stimulus and diet factors 
were not significant (max r of 0.28). Household income was significantly correlated with all stimulus factors 
(r > 0.47, p < E−19) but was not well correlated with diet factors.

Within S, phone use was most tightly correlated with fuel consumption (r = 0.83, p = 1.4E−36) and education 
(r = 0.62, p = 7.8E−52), and more correlated to income than other stimulus factors (r = 0.76, p = 3E−52). Travel 
was the least correlated to income and other stimulus factors. This may be due to the ordinal grouping of travel 
but may also indicate that it is a choice behavior. Finally, age, which was similarly distributed within each income 
group, was largely uncorrelated with most stimulus and diet factors, although strongly negatively correlated 
with education (r =  − 41, p = 5.1E−16). This likely reflects the increasing access to secondary and post-secondary 
education over the past few decades in India.

We next compared how overall consumption of stimulus and diet factors changed with income (Fig. 2B, 
Table 2). To do this we constructed composite stimulus and diet consumption scores for each individual based on 
the first principal component (PC1). The sample was then binned along the dimension of income and the average 
composite stimulus consumption score was computed for the individuals in each bin. The  R2 was computed for 
the trend of the means. Statistical significance of the ANOVA and trends in the un-binned data was computed 
as described in Methods 2.8 (Table 2). The mean stimulus consumption score increased logarithmically with 
household income  (R2 = 0.86, PANOVA = 2.6E-58; P < 5E−05 for all stats for log fit), where the steepest increase 
was in the range up to $30 per day (inset: linear fit  R2 = 0.90; PANOVA = 6.9E-09, P < 8.2E-06 all stats for linear fit). 
In contrast there was no clear relationship between the composite diet score and income across this range (not 
shown,  R2 = 0.77 exponential fit, PANOVA = 0.27).

Correlations between survey elements and EEG features. We next looked at the correlations 
between each input factor and each EEG metric (Fig. 3, Supplementary Table 5). Income and stimulus factors, 
but not diet factors, showed high correlations with all EEG metrics except peak alpha frequency (Pa). Phone 
use had the highest correlations to energy metrics (Alpha, Ea and their corresponding spatial variability; r > 0.3, 
p < 1.6E−07; Bonferroni corrected significance level = 4.2E−05). Education was correlated with all EEG metrics 
(except Pa; r = −0.06, p = 0.23) and travel was most highly correlated with complexity (r > 0.3, p < 2E−09). Elec-
tricity had the weakest correlations. Stimulus matched gender groups were not different with respect to any EEG 
metrics (Supplementary Table 11). Age, was also not strongly correlated with any of the EEG metrics but weakly 
anti-correlated with Ea (r =  − 0.15, p = 3.7E−03), suggesting a decline in alpha oscillation strength with age, con-
sistent with reports in the  literature28,29.

We next looked at trends of composite scores of EEG metrics as a function of composite scores of subsets of 
stimulus factors constructed using principal component analysis (see Fig. 3B, C, Table 2; also see Supplemen-
tary Fig. 5, Supplementary Table 6). The composite score of energy metrics (spectral metrics PC1 score) plot-
ted as a function of the composite score of technology consumption (phone, fuel and electricity; (technology 
PC1 score)) shows an exponential increase beyond a certain technology consumption score (Fig. 3B;  R2 = 0.97 
exponential fit, PANOVA = 1.5E−09, P < 3.2E−04 all fit stats). Similarly, complexity plotted against the composite 
stimulus consumption score shows a largely linear pattern that appears to level out at the highest stimulus levels 
(Fig. 3C;  R2 0.92 linear fit, PANOVA 4.2E−05, P < 3.0E−03 all fit stats). Thus key aspects of the EEG signal increase 
systematically with stimulus consumption.
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Comparing high‑stimulus and low‑stimulus groups. Given the stronger relationships between stim-
ulus factors and EEG metrics compared to diet factors, we focused our analysis going forward on these elements. 
To assess the magnitude of difference in the EEG metrics across the sample we compared the lowest and highest 
stimulus extremes of the population (Fig. 4) where low stimulus refers to minimal phone use and fuel consump-
tion and no post-primary education (see Methods 2.7). In all cases people with the lowest stimulus consumption 
lived in small, remote villages with income < $10/day. High-stimulus refers to high phone and fuel consumption 
and post-secondary education, generally urban dwellers with incomes > $50/day. All EEG metrics (except Pa) 
showed highly statistically significant differences between the low and high groups (Table 3; most cases p < 0.001, 
K–S test).

Figure 2.  Survey factors and their inter-relationships. (A) Correlation matrix of all survey factors. Boxes 
marked D and S represent diet and stimulus factors respectively. Box marked I represents income and stimulus 
factors with the most significant correlation. (B) Composite PC1 score for stimulus consumption scales 
logarithmically with household income  (R2 0.7, PANOVA 2.6E-58). Inset: expansion of data in the range up to $30/
day with linear fit  (R2 of linear fit 0.86, PANOVA 6.9E-09).
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Table 2.  PCA based comparisons.

Survey factor EEG metric/factors Best fit R2 (means) F.ANOVA PANOVA p Value best fit

Household income Stimulus consumption PC1 Logarithmic 0.86 41.5 2.60E–58 5.43E–04

Household income (upto $30/
day) Stimulus consumption PC1 Linear 0.9 6.78 6.90E–09 1.21E–04

Household income Diet consumption PC1 Exponential 0.77 1.24 2.60E–01 8.20E–01

Stimulus consumption PC1 Spectral metrics PC1 Linear 0.74 7.42 4.30E–09 1.62E–05

Stimulus consumption PC1 Complexity Linear 0.92 3.66 4.20E–04 3.00E–03

Technology consumption PC1 Spectral Metrics PC1 Exponential 0.97 7.76 1.50E–09 3.20E–04

Figure 3.  Correlations between EEG metrics and survey factors. (A) Correlation matrix of EEG metrics 
(columns) and input factors (rows) shows high correlation of stimulus factors but not diet factors to both 
spectral metrics and complexity. All r- and p-values shown in Supplementary Table 5. (B) Composite principal 
component (PC1) score for all spectral (energy) metrics plotted against composite technology PC1 score 
(phone, fuel, electricity)  (R2 exponential fit 0.97, PANOVA 1.5E09). (C) Complexity plotted against composite PC1 
score for stimulus consumption  (R2 linear fit 0.91, PANOVA 8.9E04).



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7439  | https://doi.org/10.1038/s41598-021-85236-z

www.nature.com/scientificreports/

Figure 4A–E show the densities (see Methods 2.9) of these EEG features for the high and low stimulus groups. 
Altogether the spectral differences translated to a shallower decay of the power spectrum (lower theta-beta 
ratio) and a larger alpha peak in the high-stimulus group (Fig. 4F) indicating a much higher energy signal. The 
black background to the lines in Fig. 4F represents the average standard deviation (SD) of the power spectrum 
across channels within each individual, demonstrating a higher spatial variability in the high-stimulus group. 
Correspondingly, the coefficient of variance of alpha across channels (CV_Alpha, Fig. 4D) was 3.8-fold higher 
in the high-stimulus group.

Overall the picture that emerges is an enormous magnitude of difference between the low- and high-stimulus 
groups in the energy and complexity of the EEG signal and their spatial variability, along with higher variability 
across individuals in the high-stimulus group.

Relationships of EEG metrics to survey factors. We next examined the relationship of each individual 
EEG metric to each individual survey factor (demographic, stimulus and diet) (Table 4; key examples in Figs. 5A, 
D, 6A, D and 7) computing various statistics to determine significant trends (Methods 2.7; Table 4; all trends 
Supplementary Tables 7, 8). All EEG metrics (other than Pa) showed significant increasing trends (or decreasing 

Figure 4.  Differences between low-stimulus and high-stimulus groups. (A) Densities of Alpha (relative alpha 
power) for low-stimulus and high-stimulus groups shows 1.23 × difference in means with P < 2.9E-04 (K–S 
test). (B) Densities for Ea (peak alpha energy) shows 4.8 × difference in means with P < 3.9E-05 (K–S test). (C) 
Densities for CV_Alpha shows 3.5 × difference in means with P < 5.8E-04 (K–S test). (D) Densities for Theta/
Beta ratio shows 1.13 × difference in means (here decrease, P < 5.4E-05 (K–S test). (E) Densities for Complexity 
shows 1.17 × difference in means with P < 7.5E-05 (K–S test). (F) Average power spectrums of low- and high- 
stimulus groups. Error bars: average spatial variability across individuals.

Table 3.  Comparison between low-stimulus and high-stimulus groups. *Significant < 0.01; **Signifcant < 0.001.

EEG metric
High-stimulus 
mean

Low-stimulus 
mean High-stimulus SD Low-stimulus SD P value (ttest) P value (KS test)

Alpha** 11.3 9.2 2.40 0.77 4.16E–04 2.96E–04

Ealpha (Ea)* 1.9 0.4 1.69 0.54 5.81E–04 3.98E–05

Theta/beta** 0.7 0.8 0.11 0.05 7.33E–04 5.40E–05

CV_Alpha** 19.2 5.5 15.52 5.37 3.97E–04 5.80E–04

Complexity** 75.6 64.6 7.44 12.12 1.38E–04 7.48E–05

CV_Complexity* 9.3 14.6 8.06 8.60 8.19E–03 2.35E–03

Peak alpha (Pa) 9.7 10.3 1.10 1.95 5.68E–02 5.07E–01
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Figure 5.  Relationship between education, travel and EEG complexity. (A) Mean Complexity ± SEM as a 
function of Travel (past year). Note all statistics relevant to figure 5 are shown in Table 4. (B) Complexity versus 
Travel for low and high education groups. (C) Complexity versus Travel for low- and high- income groups. (D) 
Complexity as a function of Education level. (E) Complexity versus Education for low and high travel groups. 
(F) Complexity versus Education for low and high income groups.

Table 4.  Significant trends between stimulus factors and EEG metrics. *Additional models are also significant, 
#variable is an ordinal grouping with each group assigned an arbitrary number. Thus only the direction of 
trend is significant and not the particular model.

Survey factor EEG metric F.Anova P.F.Anova
Mann–Kendall 
pval Model F.ols p-F.ols R2.ols F.tsrob p-F.tsrob R2.tsrob

1 Household income* Theta/beta 7.82 7.9E–09 0.01 Linear 38.68 3.1E–05 0.75 38.76 3.1E–05 0.749

2 Household income* Complexity 5.4 6.8E–09 0.00 Logarithmic 31.19 8.8E–05 0.71 34.39 5.6E–05 0.726

3 Household income Alpha 11.39 4.4E–13 0.05 Exponential 27.76 1.5E–04 0.68 5.13 4.1E–02 0.283

4 Household income* Ealpha 5.84 2.0E–06 0.01 Linear 27.58 1.6E–04 0.68 23.88 3.0E–04 0.647

5 Education level* Alpha 6.06 1.2E–09 0.01 Exponential 15.67 2.2E–03 0.59 5.99 3.2E–02 0.352

6 Education level Ealpha 4.18 4.2E–06 0.01 Linear 25.83 3.5E–04 0.70 19.38 1.1E–03 0.638

7 Education level Complexity 4.15 4.5E–06 0.00 Linear 43.15 4.0E–05 0.80 33.65 1.2E–04 0.754

8 Education level CV_Alpha 5.64 7.3E–09 0.04 Exponential 8.38 1.5E–02 0.43 5.74 3.5E–02 0.343

9 Education level* Theta/beta 4.63 5.6E–07 0.01 Linear 20.15 9.2E–04 0.65 8.09 1.6E–02 0.424

10 Phone usage* Alpha 11.71 1.1E–11 0.00 Exponential 30.32 1.6E–06 0.40 25.67 7.0E–06 0.358

11 Phone usage* Ealpha 6.7 1.3E–06 0.00 Linear 11.59 1.4E–03 0.20 21.24 3.3E–05 0.321

12 Phone usage* CV_Alpha 9.4 2.2E–09 0.00 Linear 17.32 1.4E–04 0.27 27.10 4.4E–06 0.371

13 Phone usage* Theta/beta 7.47 2.0E–07 0.00 Exponential 9.06 4.2E–03 0.16 21.69 2.8E–05 0.320

14 Phone usage* Complexity 4.14 5.4E–06 0.00 Linear 8.07 6.7E–03 0.15 20.35 4.6E–05 0.311

15 Fuel consumption Alpha 6.28 2.8E–03 0.00 Exponential 11.55 2.9E–03 0.37 5.88 2.5E–02 0.227

16 Farthest travel (past 
year)*# Complexity 10.45 5.1E–08 0.03 Linear 42.54 7.3E–03 0.93 39.12 8.2E–03 0.929
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in the case of theta/beta ratio) with increasing income and multiple stimulus factors. Phone usage, education 
and income had the most robust relationships to most EEG metrics, although alpha metrics were more related 
to phone usage. In contrast age did not have a significant relationship with any metric other than Ea and most 
diet factors did not have significant trends although the variety of fruit and vegetables had weak but significant 
trend relationships to alpha and the theta-beta ratio (although the correlations were not significant). The most 
significant trends (significant by all statistical tests and in correlations) are shown in Table 4. Subsequent sections 
focus on these specific trends between stimulus factors and EEG metrics.

Figure 6.  Relationship between phone, fuel and spectral metrics. (A) Mean Alpha ± SEM (where Alpha is 
relative alpha power) as a function of Phone usage (axis shown in log scale). (All statistics Table 4; N values 
Supplementary Table 9). (B) Alpha versus Phone Usage for low and high fuel consumption groups. (C) Alpha 
versus Phone Usage for low- and high- income groups. (D) Alpha as a function of Fuel Consumption (E) Alpha 
versus Fuel Consumption for low and high phone usage groups. (F) Alpha versus Fuel Consumption for low and 
high income groups.
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Education, travel and EEG complexity. Complexity increased linearly with education (Fig. 5A;  R2 0.8, 
p < 4.5E-06) and farthest travel in the past year (Fig. 5D;  R2 0.93, p < 5.1E-08). Since education and travel are 
significantly correlated and with one another (r = 0.57) as well as with income (r = 0.64 and 0.48 respectively), 
we next considered whether they had independent contributions to complexity (Fig. 5). To do this we looked 
at complexity as a function of travel for those with low education (< 5th grade) and those with high education 
(> 12th grade) (Fig. 5B). Complexity in both the low and high education groups systematically increased with 
travel. However, those in the higher education group were higher overall suggesting that education may impact 
complexity over and above travel. Note that in the high education group of our sample, no individual had a 
travel category less than 4 and no individual in our low education group had a travel category of 5. We similarly 
looked at complexity as a function of travel for those with income < $10/day and those with > $30/day (Fig. 5C). 
Complexity increased linearly as a function of travel for both income groups, although the high-income group 
had greater complexity overall, suggesting that travel independently impacts EEG signal complexity.

Conversely, we plotted complexity as a function of education for low travel (groups 1 and 2) and those high 
travel (groups 4 and 5) (Fig. 5E), grouping education into primary (0–5 years), middle (6–8 years), high school 
(9–12 years) and college or above. Complexity increased with education for both low and high travel groups. 
However, there was no difference between the low and high travel groups at the high school level, which could 
be on account of the very small number of people with high school education who had low travel (N = 6). We 
similarly looked at complexity as a function of education for the income groups < $10/day and > $30/day (Fig. 5F). 
Once again complexity increased linearly as a function of travel for both income groups, with the high-income 
group having slightly but not substantially greater complexity overall. This data suggests that travel has an effect 
on complexity of the EEG that is independent of education and income. On the other hand, while education likely 
accounts for a large proportion of the income dependent change in complexity, it was more difficult to parse in 
part due to the close tracking of educational attainment with income. Note that complexity increased logarith-
mically with income (Fig. 7C) which closely mirrored the relationship between education and income (Fig. 7E).

Phone, fuel and spectral features. We next looked at the relationship between phone use, fuel consump-
tion and the alpha component of the power spectrum (Fig. 6). Here we see an exponential increase in Alpha with 

Figure 7.  Relationship between income and key EEG features. (A) Alpha ± SEM as a function of Household 
Income. (B) Phone Usage as a function of income tracks pattern of Alpha as shown in A. (C) Complexity as a 
function of Household Income. (D) Education as a function of Household Income tracks pattern of Complexity 
as shown in C.
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phone usage beyond ~ $30/month and fuel consumption of ~ $50/month (Fig. 6 A, D). The pattern was virtually 
identical for Ea and CV_Alpha (not shown).

Given the high correlation between phone usage and fuel consumption (r = 0.83) we next looked to see 
whether it was possible to parse out their differential relationships. We first assessed Alpha as a function of 
phone usage for low and high fuel consumption groups (< $10/month and > $50/month) (Fig. 6B). The high fuel 
consumption group mirrored the overall trend. However the low fuel consumption group did not have phone 
usage beyond the threshold of change, offering an inadequate comparison. Conversely, we looked at Alpha as a 
function of fuel consumption for two groups of phone usage (< $1/month and > $30/month) (Fig. 6E). There was 
a clear lack of change in Alpha in either group for any level of fuel consumption. However, Alpha was uniformly 
larger in the high phone usage group for all levels of fuel consumption. This suggests that the relationship between 
EEG spectral/energy features and technology are largely dominated by phone usage, while the relationships with 
fuel consumption are indirect reflections of its correlation to phone use.

We next looked at changes in Alpha as a function of phone usage for two income groups (< $10/day, > $30/day) 
(Fig. 6C). Phone usage in the low-income group was largely < $7/month. Furthermore, there was no change in 
Alpha across this range. In contrast, Alpha increased as a function of phone use beyond $30/month for the high-
income group, as did its variability (indicated by the growing error bars). In contrast, while there was a wide range 
of fuel consumption in the low income group (up to $120/month for those whose livelihoods were in transport 
and delivery), there was no change in Alpha at any level of fuel consumption (Fig. 6F). We note further that the 
pattern of change of Alpha with income (Fig. 7A) mirrored the pattern of phone use with income (Fig. 7B). Thus 
phone use may be a key driver of changes in spectral characteristics or energy in a threshold dependent manner.

Discussion
Stimulus dependent divergence of human brain physiology. Numerous social and technological 
innovations from institutionalized education, electricity, cell phones and motorized transport have profoundly 
changed the rate and scope of human stimulus exposure over the past 200 years. While the disparities in access 
have been discussed widely, their impact on brain physiology has not been previously considered. In this study 
we have identified a significant relationship between income, consumption of the major stimulus expanding 
factors of education, travel, and phone use, and the energy and complexity of the resting state EEG signal. The 
most shocking aspect of these results is the immense magnitude of the differences in brain physiology between 
the two extremes of humanity—those still living in relatively premodern low-stimulus conditions with no more 
than a primary education and no phones, compared to college educated, digitally connected city dwellers. Given 
the context of the literature one would expect some differences to arise in overall brain activity as the stimulus 
environment changes. However, differences on the order of threefold or more, as we have shown along some 
dimensions, are unexpected. As a point of reference, differences in physiological characteristics associated with 
mental illness tend to be on the order of 20–35%30.

These findings demonstrate that we have not fully appreciated the immense capability of technologies and 
other changes to the stimulus environment to alter our brain physiology. As access to stimulus diverges across 
humanity, our findings also call into question the concept of a prototypical human brain, an idea that has domi-
nated the field of neuroscience, suggesting instead that brain physiology must be viewed in the context of its 
stimulus exposure.

Lack of effect of diet factors. Both diet and sensory stimulii of any kind have the potential to influ-
ence the wiring and resulting physiology of the brain. Proteins and carbohydrates provide the raw material 
and energy for all key cellular processes and low caloric intake or access to protein rich food can significantly 
impact the brain’s capability for wiring and plasticity. In this respect caloric malnutrition has been associated 
with reduced capacity to learn in  children31–34. Likewise, fruit and vegetables deliver key micronutrients that play 
a role in various aspects of neuronal physiology from axonal outgrowth to synaptic  plasticity35–38 and micronu-
trient deficiencies have been shown to impact cognitive and mental health  outcomes36,39,40. While the variety of 
fruit and vegetables had directional trends with spectral metrics, they were not as significant. This is likely due to 
the lack of significant differences in the consumption of broad food groups across the wide income range that we 
looked at. Such gross differences in access to food groups are likely to be most apparent closer to the poverty line 
of $2 per day and not in higher income ranges where discretionary spending is increasingly to acquire stimulus 
factors. However, it is also possible that diet affects different aspects of the brain than stimulus.

Education, travel and signal complexity. Both education and travel alter the novelty of stimulus expo-
sure but do so in fundamentally different ways. Education focuses on symbolic systems—letters and numbers 
and their subsequent application to knowledge acquisition, and contributes substantially to IQ and cognitive 
 outcome31. In contrast travel is a complex interactive experience that requires planning and navigating new 
spatial environments, people, languages and cultures. Both were associated with significant gains in complexity 
of ~ 20 points (~ 30%) from the lowest category to the highest. Further, the evidence suggests that the increases 
in complexity with travel and education were largely independent, although parsing out the specific effects are 
challenged by the high correlations among all factors and calls for much larger scale studies. Nonetheless, our 
results lend to a hypothesis that the complexity of the signal may reflect the complexity of learned associations 
in general, whether through symbolic systems or exploration of new environments.

Phone use and spectral energy. Electricity, motorized transport and phones are major technologies that 
alter the rate and scope of stimulus exposure. We captured broad levels of use of these technologies by looking at 
the amount individuals spent on these technologies each month. While this cannot distinguish how people are 
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using them, it provides a view of the consequences of access to these technologies at a population level. Spending 
on all of these technologies had high correlations to one another, and to income, and similar relationships with 
the spectral features, essentially a shift towards higher frequencies (a lower theta-beta ratio and stronger alpha 
oscillation) with increased consumption. There was also greater spectral variability across channels placed over 
different brain regions, and across individuals as consumption increased, likely reflecting differences in how 
these technologies were used.

Among the technologies, the evidence suggests that phone usage is the key driver of changes in spectral prop-
erties (Figs. 6, 7). The threshold where spectral features begin to change (> $10–$20/month) is at a level where 
there is a shift from the use of basic phones used for calling with prepaid sim cards to postpaid smart phone use 
with data plans. We hypothesize that the lack of effects at the low end of phone use could be an indication that 
it is not simply the ability to call and communicate verbally with more people that has altered brain physiology, 
but rather the enhanced ability to access information that a smart phone provides. Whatever the reason, it is 
imperative that we understand it further and call for attention to this as an important area of study.

Possible mechanisms. Rodents raised in enriched stimulus environments display increased 
 neurogenesis41,42, dendritic  branching9,10 and enhanced cortico-cortical  interactions11,12. The enriched stimu-
lus environment enabled by modern tools may have similar effects resulting in a larger and more structurally 
complex network that produces more complex and variable dynamics with higher energy (i.e. skewed towards 
higher frequencies) and is visible as an increase in cortical volume and surface area. Credence for this hypothesis 
comes from studies in the United States demonstrating that childhood poverty has a negative effect on cortical 
 volume14, surface  area15, and gamma power in the  EEG16. Conversely years of education have been shown to cor-
relate positively with these structural aspects of the  cortex17,18. It is also of interest to note that the relationship of 
income to surface area was  logarithmic15 as was the relationship we have shown to EEG metrics. Post-mortem 
anatomical studies of people in low- and high-stimulus environments could reveal the extent of underlying 
structural differences.

Implications for cognitive function. What do these findings mean for the health and functioning of the 
brain? Evidence suggests there may be substantial implications for cognitive health.

The complexity metric we have used here has not been extensively studied in relation to cognitive function. 
However it has been shown to be significantly correlated to performance on a Raven’s pattern recognition  task27, 
and years of education, which correlates with complexity of the signal, is also associated with an increase in 
performance on cognitive  tests43,44, suggesting that complexity may serve as an indicator of cognitive capacity.

The alpha oscillation, which is enhanced in high-stimulus populations, is hypothesized to play a role in 
selective attention and mental  imagery24–26,45,46 and decrease in the eyes closed resting state with sleepiness and 
reduced  alertness47. It also declines with  age48 and is decreased in fragile X mental retardation  syndrome49 Alz-
heimer’s and amnesic mild cognitive  impairment50. Similarly, a higher theta/beta ratio, which reflects a steeper 
decay of the power spectrum and therefore lower signal energy, has been associated with symptoms of ADHD in 
 children51 as well as sleep  deprivation52. It will be interesting in future research to understand the relationships 
between stimulus consumption, sleep and cognitive outcome.

Implications for mental health. A higher incidence of mental health disorders has been associated with 
both the fast paced stimulus environments of  cities53,54 as well as lower socioeconomic  status16,55–57. In India 
prevalence of mental health disorders decreases systematically with education from 11.8% for illiterate popu-
lations to 6.03% for college graduates and from 12.28% in the lowest income quintile to 8.76% in the highest 
income  quintile58,59. However, it is unlikely that these changes in brain physiology primarily reflect differences 
in mental health status.

No individual disorder had prevalence over 5% other than alcohol dependence (11.5%) in Tamil  Nadu58,59, 
which is not sufficient to drive the results. Significance levels between low stimulus and high stimulus groups 
persisted even when selectively removing the highest or lowest 5% or 10% of the data in one group or another 
(Supplementary Table 10). More significantly, depression (4.62%) is not associated with changes in alpha power or 
the theta-beta  ratio30 and therefore cannot account for the spectral changes seen here. Also, alcohol dependence 
was 19× higher in males relative to  females58,59 but none of the EEG metrics were significantly different between 
rural males and females ruling out alcoholism as an explanation. Altogether, no mental health disorder other than 
OCD had a similar pattern of spectral change or impact to alpha power in  adults30. With < 1% OCD morbidity in 
Tamil  Nadu58,59, and very small magnitude relative to the results here, it is an unlikely explanation. On the other 
hand, we note that alpha power, in addition to its correlation to attention and sleepiness is also correlated with 
higher trait  anxiety60. Thus it will be of considerable interest to parse out the nature of the relationship between 
stimulus environment, brain physiology and cognitive and trait outcomes.

Societal implications of diverging brain physiology. Much work has been done over the past decades 
to reduce global poverty and its impact on global health. A major effort has been around moving people above 
the poverty line, presently defined by the World Bank as $2 per day, determined as the minimum income to 
establish caloric parity and eliminate  hunger61,62. While caloric parity may be achieved at $2 per day, our data 
indicates that reasonable parity in stimulus consumption was achieved only in the range of $30 to $50 per day. 
Correspondingly this was also the range where relative parity was achieved in the complexity and energy of 
the brain signal. At $30/day ($10,950/year) one can own a car and smart phone and afford school fees in India. 
However in India only about 0.5% have incomes above $30 per  day63. In 2011 PPP terms, globally only 7% of 
humanity live on > $50 a day (considered high income) and 16% on $20-$50/day (considered upper-middle 
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income) respectively. This highlights the importance of social policies around universal education and enabling 
infrastructure and the imperative for understanding causal relationships between stimulus factors, brain physi-
ology and cognitive outcome.

Limitations of the study. Our study raises several interesting and important hypotheses but has substan-
tial limitations. First, it cannot provide direct insights into cause and effect. This is both a specific challenge of 
this study where there are no controls per se, but also a general challenge of studying natural human systems 
where individual behavior and environments cannot be dictated and controlled. Second, individual factors were 
gross approximations of complex underlying phenomenology. For instance, while more years of education may 
roughly approximate more knowledge, curriculum and quality of teaching can differ substantially such that two 
people with the same years of education may have had quite different knowledge exposure. Our measures of diet 
similarly captured only broad food groups that do not reflect the nutrient quality of the choices within those 
groups. A third significant limitation is the difficulty of parsing out the impact of individual factors given that 
most stimulus factors tended to move together. However, despite these limitations we bring to light a general 
phenomenon of wide divergence of human brain physiology that is systematically related to the stimulus envi-
ronment, generating a number of hypotheses that warrant further study.
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